Vance Press
Register Login

Rock Mechanics Letters

Open Access Research Article

Analysis of Rock Friction Coefficient Characteristics Based on Friction Experimental Equipment

by Zhipeng Hong 1,* Wei Hao 1 Liang He 1 Yinuo Zhang 1  and  Zhaoyu Wen 1
1
Xi’an University of Technology
*
Author to whom correspondence should be addressed.
Received: 20 May 2025 / Accepted: 16 June 2025 / Published Online: 19 June 2025

Abstract

Friction coefficient, as a parameter of mechanical state, plays a crucial role in the shear failure of rocks in the field of Earth sciences. This paper investigates the frictional characteristics and anisotropy of rock by analyzing the coefficient of variation of the friction coefficient (f) and the anisotropy index of rock friction coefficients Af. Rotational friction tests were conducted using cylindrical granite against square samples of granite, sandstone, and andesite in three directions to analyze the relationship between the friction coefficient and various drilling parameters. This study reveals the variations in the friction coefficient and notable changes in the friction coefficient’s anisotropy. The results indicate a correlation between the alignment of turning points during the frictional stage and the rock strength. During the experiment, the friction coefficient undergoes cyclic variation before gradually stabilizing. The anisotropy of rotational friction follows the order: granite > andesite > sandstone, suggesting that the higher rock strength corresponds to greater frictional anisotropy. The rotational friction control coefficient C is derived and linked to the rotational friction stage. The duration of effective contact between rock surfaces and directional cutting efficiency are the primary factors contributing to anisotropy. The results offer practical implications for drilling design and seismic risk assessment in anisotropic rock formations.


Copyright: © 2025 by Hong, Hao, He, Zhang and Wen. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY) (Creative Commons Attribution 4.0 International License). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
Show Figures

Share and Cite

ACS Style
Hong, Z.; Hao, W.; He, L.; Zhang, Y.; Wen, Z. Analysis of Rock Friction Coefficient Characteristics Based on Friction Experimental Equipment. Rock Mechanics Letters, 2025, 2, 15. doi:10.70425/rml.202502.15
AMA Style
Hong Z, Hao W, He L et al.. Analysis of Rock Friction Coefficient Characteristics Based on Friction Experimental Equipment. Rock Mechanics Letters; 2025, 2(2):15. doi:10.70425/rml.202502.15
Chicago/Turabian Style
Hong, Zhipeng; Hao, Wei; He, Liang; Zhang, Yinuo; Wen, Zhaoyu 2025. "Analysis of Rock Friction Coefficient Characteristics Based on Friction Experimental Equipment" Rock Mechanics Letters 2, no.2:15. doi:10.70425/rml.202502.15
APA Style
Hong, Z., Hao, W., He, L., Zhang, Y., & Wen, Z. (2025). Analysis of Rock Friction Coefficient Characteristics Based on Friction Experimental Equipment. Rock Mechanics Letters, 2(2), 15. doi:10.70425/rml.202502.15

Article Metrics

Article Access Statistics

References

  1. Roxborough FF, Phillips HR. Rock excavation by disc cutter. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. 1975; 12(12): 361–6. Doi:10.1016/0148-9062(75)90547-1
  2. Wang Q, Liu B, Jiang B, Gao H, Li S, Xu S, et al. Application of slip line theory and core drilling in the prediction of rock c-φ parameters. European Journal of Environmental and Civil Engineering. 2022; 26(6): 2204–17. Doi:10.1080/19648189.2020.1755369
  3. Wang Q, Gao S, Jiang B, Li S, He M, Gao H, et al. Rock-Cutting Mechanics Model and Its Application Based on Slip-Line Theory. Int J Geomech. 2018; 18(5): 04018025. Doi:10.1061/(ASCE)GM.1943-5622.0001136
  4. Cowie PA, Scholz CH. Growth of faults by accumulation of seismic slip. Journal of Geophysical Research: Solid Earth. 1992; 97(B7): 11085–95. Doi:10.1029/92JB00586
  5. Scholz CH. Wear and gouge formation in brittle faulting. Geology. 1987; 15(6):493–5. Doi:10.1130/0091-7613(1987)15<493:WAGFIB>2.0.CO;2
  6. Han R, Hirose T, Shimamoto T, Lee Y, Ando J. Granular nanoparticles lubricate faults during seismic slip. Geology. 2011; 39(6): 599–602. Doi:10.1130/G31842.1
  7. Ramamurthy T, Rao GV, Singh J. Engineering behaviour of phyllites. Engineering Geology. 1993; 33(3):209–25. Doi:10.1016/0013-7952(93)90059-L
  8. Amadei B. Importance of anisotropy when estimating and measuring in situ stresses in rock. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. 1996; 33(3): 293–325. Doi:10.1016/0148-9062(95)00062-3
  9. Hoek E, Marinos PG, Marinos VP. Characterisation and engineering properties of tectonically undisturbed but lithologically varied sedimentary rock masses. International Journal of Rock Mechanics and Mining Sciences. 2005; 42(2): 277–85. Doi:10.1016/j.ijrmms.2004.09.015
  10. Oda M, Nakayama H. Yield Function for Soil with Anisotropic Fabric. Journal of Engineering Mechanics. American Society of Civil Engineers; 1989; 115(1): 89–104. Doi:10.1061/(ASCE)0733-9399(1989)115:1(89)
  11. Sayers CM. Stress‐dependent seismic anisotropy of shales. GEOPHYSICS. Society of Exploration Geophysicists; 1999; 64(1):93–8. Doi:10.1190/1.1444535
  12. Kuganenthira N, Zhao D, Anandarajah A. Measurement of fabric anisotropy in triaxial shearing. Géotechnique. ICE Publishing; 1996; 46(4): 657–70. Doi:10.1680/geot.1996.46.4.657
  13. Munoz H, Taheri A, Chanda E. Rock cutting characteristics on soft-to-hard rocks under different cutter inclinations. International Journal of Rock Mechanics and Mining Sciences. 2016; 87: 85–9. Doi:10.1016/j.ijrmms.2016.05.014
  14. Munoz H, Taheri A, Chanda EK. Rock Drilling Performance Evaluation by an Energy Dissipation Based Rock Brittleness Index. Rock Mech Rock Eng. 2016; 49(8): 3343–55. Doi:10.1007/s00603-016-0986-0
  15. Richard T, Dagrain F, Poyol E, Detournay E. Rock strength determination from scratch tests. Engineering Geology. 2012; 147–148: 91–100. Doi:10.1016/j.enggeo.2012.07.011
  16. Kalantari S, Hashemolhosseini H, Baghbanan A. Estimating rock strength parameters using drilling data. International Journal of Rock Mechanics and Mining Sciences. 2018; 104: 45–52. Doi:10.1016/j.ijrmms.2018.02.013
  17. Liu Y, Ma T, Chen P, Yang C. Method and apparatus for monitoring of downhole dynamic drag and torque of drill-string in horizontal wells. Journal of Petroleum Science and Engineering. 2018; 164: 320–32. Doi:10.1016/j.petrol.2018.01.077
  18. Ma T, Chen P, Han X. Simulation and interpretation of the pressure response for formation testing while drilling. Journal of Natural Gas Science and Engineering. 2015; 23: 259–71. Doi:10.1016/j.jngse.2015.01.044
  19. Schunnesson H. RQD predictions based on drill performance parameters. Tunnelling and Underground Space Technology. 1996; 11(3): 345–51. Doi:10.1016/0886-7798(96)00024-7
  20. Hareland G, Wu A, Rashidi B. A Drilling Rate Model for Roller Cone Bits and Its Application. OnePetro; 2010. Doi:10.2118/129592-MS
  21. Yang L, Zhang M, Jiao W, Wu Y, Zhang C, Wang Z. Influence of intergranular friction weakening on rock avalanche dynamics. Computers and Geotechnics. 2023; 159: 105440.
  22. Zhang M, Yang L, Li W, Wang Z, Zhang C, Chen Q, et al. Frictional properties of the rupture surface of a carbonate rock avalanche. International Journal of Rock Mechanics and Mining Sciences. 2022; 153:105088.
  23. Qi C, Xia C, Dyskin A, Zhao F. Effect of crack interaction and friction on the dynamic strength of rock-like materials with many cracks. Engineering Fracture Mechanics. 2021; 257: 108006. Doi:10.1016/j.engfracmech.2021.108006
  24. Pirzada MA, Roshan H, Sun H, Oh J, Andersen MS, Hedayat A, et al. Effect of contact surface area on frictional behaviour of dry and saturated rock joints. Journal of Structural Geology. 2020; 135: 104044.
  25. Hellebrekers N, Niemeijer AR, Fagereng Å, Manda B, Mvula RL. Lower crustal earthquakes in the East African Rift System. Tectonophysics. 2019; 767: 228167.
  26. Ma GW, An XM, Wang MY. Analytical study of dynamic friction mechanism in blocky rock systems. International Journal of Rock Mechanics and Mining Sciences. 2009; 46(5): 946–51. Doi:10.1016/j.ijrmms.2009.04.001
  27. Chen Y, Yang J, Li M, Zhou L, Guo B, Zuo J. Effects of roughness on shear properties and acoustic emission characteristics of bonded Rock-Concrete interfaces. Construction and Building Materials. 2023; 398:132405.
  28. Guo JB, Guo BH, Chen Y, Luo T. Strength criterion for rock unloading considering end friction effect. Chinese Journal of Rock Mechanics and Engineering. 2019; 38(7): 1307–18. Doi:10.13722/j.cnki.jrme.2018.1433
  29. Sun CX, Guo BH, Cheng T, Tian SX, Sun JH. Experimental study on shear mechanical behavior of rock joints under constant normal stiffness. China Sciencepaper Online. 2021; 14(1): 114–23
  30. Guo BH. Numerical analysis of sample size, borehole, and end friction effects in rock specimens. Chinese Journal of Rock Mechanics and Engineering. 2009; 28(S2): 3391–401.
  31. Wu K, He M, Yuan Z, Liu X, Luo B, Ma X, et al. Characterizing rock transverse anisotropic spatial variations using digital drilling. Geoenergy Science and Engineering. 2024; 232: 212451. Doi:10.1016/j.geoen.2023.212451
  32. He M, Zhang Z, Zhu J, Li N, Li G, Chen Y. Correlation between the rockburst proneness and friction characteristics of rock materials and a new method for rockburst proneness prediction. Journal of Petroleum Science and Engineering. 2021; 205:108997.
  33. He M, Wang H, Ma C, Zhang Z, Li N. Evaluating the Anisotropy of Drilling Mechanical Characteristics of Rock in the Process of Digital Drilling. Rock Mech Rock Eng. 2023; 56(5): 3659–77. Doi:10.1007/s00603-023-03242-1
  34. Lhomme T. Frictional contact at a rock-tool interface [PhD Thesis]. University of Minnesota; 1999.
  35. Thomsen L. Weak elastic anisotropy. Geophysics. 1986; 51(10): 1954–66. Doi:10.1190/1.1442051
  36. Ramamurthy T. Strength and modulus responses of anisotropic rocks. Comprehensive Rock Engineering. Pergamon Press Oxford, UK; 1993; 1(13): 313–29.
  37. Gurevich B, Pervukhina M, Makarynska D. An analytic model for the stress-induced anisotropy of dry rocks. Geophysics. 2011; 76(3): WA125–33. Doi:10.1190/1.3567950
  38. Shen B, Siren T, Rinne M. Modelling Fracture Propagation in Anisotropic Rock Mass. Rock Mech Rock Eng. 2015; 48(3): 1067–81. Doi:10.1007/s00603-014-0621-x
  39. Rubinstein SM, Cohen G, Fineberg J. Detachment fronts and the onset of dynamic friction. Nature. Nature Publishing Group UK London; 2004; 430(7003): 1005–9.
  40. Mizoguchi K, Fukuyama E. Laboratory measurements of rock friction at subseismic slip velocities. International Journal of Rock Mechanics and Mining Sciences. 2010; 47(8):1363–71.
  41. Li Z, Fortin J, Nicolas A, Deldicque D, Guéguen Y. Physical and Mechanical Properties of Thermally Cracked Andesite Under Pressure. Rock Mech Rock Eng. 2019; 52(10): 3509–29. Doi:10.1007/s00603-019-01785-w
  42. Chen Y-L, Ni J, Shao W, Azzam R. Experimental study on the influence of temperature on the mechanical properties of granite under uni-axial compression and fatigue loading. International Journal of Rock Mechanics and Mining Sciences. 2012; 56: 62–6. Doi:10.1016/j.ijrmms.2012.07.026
  43. Xia B, Li Y, Hu H, Luo Y, Peng J. Effect of Crack Angle on Mechanical Behaviors and Damage Evolution Characteristics of Sandstone Under Uniaxial Compression. Rock Mech Rock Eng. 2022; 55(11): 6567–82. Doi:10.1007/s00603-022-03016-1
  44. Lu P, Wood RJK, Gee MG, Wang L, Pfleging W. The use of anisotropic texturing for control of directional friction. Tribology International. 2017; 113: 169–81. Doi:10.1016/j.triboint.2017.02.005
  45. Xia K, Rosakis AJ, Kanamori H, Rice JR. Laboratory Earthquakes Along Inhomogeneous Faults. Science. American Association for the Advancement of Science; 2005; 308(5722): 681–4. Doi:10.1126/science.1108193
  46. Baumberger T, Caroli C, Ronsin O. Self-healing slip pulses and the friction of gelatin gels. Eur Phys J E. 2003; 11(1): 85–93. Doi:10.1140/epje/i2003-10009-7
  47. Ben-David O, Cohen G, Fineberg J. The Dynamics of the Onset of Frictional Slip. Science. 2010; 330(6001): 211–4. Doi:10.1126/science.1194777
  48. Passelègue FX, Schubnel A, Nielsen S, Bhat HS, Madariaga R. From Sub-Rayleigh to Supershear Ruptures During Stick-Slip Experiments on Crustal Rocks. Science. 2013; 340(6137): 1208–11. Doi:10.1126/science.1235637
  49. Bayart E, Svetlizky I, Fineberg J. Fracture mechanics determine the lengths of interface ruptures that mediate frictional motion. Nature Physics. Nature Publishing Group UK London; 2016; 12(2):166–70.