Vance Press
Register Login

Rock Mechanics Letters

Open Access Review Article

The Vajont Landslide: an overview of 60 years of research

by Rafaela Oliveira Lapa 1,*  and  Gyula Bögöly 1
1
Budapest University of Technology and Economics, Department of Engineering Geology and Geotechnics, Budapest, Hungary
*
Author to whom correspondence should be addressed.
Received: 27 June 2025 / Accepted: 3 August 2025 / Published Online: 20 August 2025

Abstract

The Vajont Landslide, one of the most catastrophic events in history, has been extensively studied for over 60 years. Navigating the extensive Vajont literature presents challenges due to the volume of information, persistent questions, ongoing controversies, and even unreliable information. This review offers a novel synthesis by identifying the most influential hypotheses through the lens of updated geomorphological reconstructions, evolving interpretations of the sliding surface, and conflicting assumptions. It highlights how certain long-held assumptions may have led to biased conclusions, presents a concise dataset of key geotechnical parameters, and stresses the need for future analyses that integrate rainfall and reservoir effects over time, account for possible progressive strength degradation, and revisit slope stability under more realistic boundary conditions. By clarifying closed questions and spotlighting persistent uncertainties, this paper aims to guide future research and reframe understanding of the Vajont landslide.


Copyright: © 2025 by Oliveira Lapa and Bögöly. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY) (Creative Commons Attribution 4.0 International License). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Share and Cite

ACS Style
Oliveira Lapa, R.; Bögöly, G. The Vajont Landslide: an overview of 60 years of research. Rock Mechanics Letters, 2025, 2, 21. doi:10.70425/rml.202503.21
AMA Style
Oliveira Lapa R, Bögöly G. The Vajont Landslide: an overview of 60 years of research. Rock Mechanics Letters; 2025, 2(3):21. doi:10.70425/rml.202503.21
Chicago/Turabian Style
Oliveira Lapa, Rafaela; Bögöly, Gyula 2025. "The Vajont Landslide: an overview of 60 years of research" Rock Mechanics Letters 2, no.3:21. doi:10.70425/rml.202503.21
APA Style
Oliveira Lapa, R., & Bögöly, G. (2025). The Vajont Landslide: an overview of 60 years of research. Rock Mechanics Letters, 2(3), 21. doi:10.70425/rml.202503.21

Article Metrics

Article Access Statistics

References

  1. Paronuzzi P, Bolla A. The prehistoric Vajont rockslide: An updated geological model. Geomorphology. 2012; 169–170: 165–91. https://doi.org/10.1016/j.geomorph.2012.04.021.
  2. Dykes AP, Bromhead EN. New, simplified and improved interpretation of the Vaiont landslide mechanics. Landslides. 2018; 15: 2001–2015. https://doi.org/10.1007/s10346-018-0998-9.
  3. Dykes AP, Bromhead EN. The Vaiont landslide: re-assessment of the evidence leads to rejection of the consensus. Landslides. 2018; 15: 1815–1832. https:// doi.org/10.1007/s10346-018-0996-y.
  4. Genevois R, Tecca PR. The vajont landslide: state-of-the-art. Italian Journal of Engineering Geology and Environment. 2013: 15–39. https://doi.org/10.4408/IJEGE.2013-06.B-02.
  5. Giudici F, Semenza E. Studio geologico sul serbatoio del Vajont. 1960.
  6. Carloni GC, Mazzanti R. Rilevamento geologico della frana del Vaiont. 1964.
  7. Selli R, Trevisan L. Caratteri e interpretazioni della frana del Vajont. Giornale Di Geologia 1964; 32.
  8. Martins B. Contributo alla stratigrafia dei dintorni di Erto-Casso (Pordenone) ed alla conoscenza delle caratteristiche strutturali e meccaniche della frana del Vajont. Memorie delle scienze geologiche. 1979; 32.
  9. Hendron AJ, Patton FD. The vaiont slide — A geotechnical analysis based on new geologic observations of the failure surface (Volume I). Engineering Ge-ology. 1985; 24: 475–91. https://doi.org/10.1016/0013-7952(87)90080-9.
  10. Ghirotti M. Modellazione numerica della Frana del Vajont Sulla Base di nuovi dati.pdf 1994.
  11. Wolter A, Stead D, Ward BC, Clague JJ, Ghirotti M. Engineering geomor-phological characterisation of the Vajont Slide, Italy, and a new interpretation of the chronology and evolution of the landslide. Landslides. 2016; 13: 1067–81. https://doi.org/10.1007/s10346-015-0668-0.
  12. Pasuto A. The Vajont Valley (Eastern Alps): A Complex Landscape Deeply Marked by Landsliding. In: Soldati M, Marchetti M, editors. Landscapes and Landforms of Italy, Cham: Springer International Publishing; 2017, p. 135–45. https://doi.org/10.1007/978-3-319-26194-2_11.
  13. Kiersch GA. Vajont Reservoir Disaster. Civil Engineering. 1964; 34: 32–9.
  14. Müller L. The rock slide in the Vaiont valley. Rock Mechanics and Engineering Geology. 1964; 2: 148–212.
  15. Müller L. New considerations on the Vaiont slide. Rock Mechanics & Engi-neering Geology. 1968.
  16. Müller L. The Vajont catastrophe— A personal review. Engineering Geology. 1987; 24: 423–44. https://doi.org/10.1016/0013-7952(87)90078-0.
  17. Müller L. The Vajont Slide. Engineering Geology. 1987; 24.
  18. Rossi D, Semenza E. Carte geologiche del versante settentrionale del Monte Toc e zone limitrofe, prima e dopo il fenomeno di scivolamento del 9 Ottobre 1963. 1965.
  19. Riva M, Masetti M, Rocatti D, Sapigni F, Semenza E. Geologia delle valli Vaiont e Gallina (Dolomiti orientali). Annali Dell’Universita Di Ferrara 1990.
  20. Semenza E. La Storia del Vaiont raccontata dal geologo che ha scoperto la frana. K-flash; 2005.
  21. Genevois, Ghirotti. The 1963 Vaiont Landslide. Giornale Di Geologia Applicata. 2005. https://doi.org/10.1474/GGA.2005-01.0-05.0005.
  22. Mantovani F, Vita-Finzi C. Neotectonics of the Vajont dam site. Geomor-phology. 2003; 54: 33–7. https://doi.org/10.1016/S0169-555X(03)00053-9.
  23. Paronuzzi P, Bolla A. A New Interpretation of the Geotechnical Context of the Vajont Rockslide. In: Margottini C, Canuti P, Sassa K, editors. Landslide Science and Practice, Berlin, Heidelberg: Springer Berlin Heidelberg; 2013, p. 123–31. https://doi.org/10.1007/978-3-642-31319-6_18.
  24. Bistacchi A. A 3D geological model of the 1963 vajont landslide. Italian Journal of Engineering Geology and Environment. 2013: 531–9. https://doi.org/10.4408/IJEGE.2013-06.B-51.
  25. Massironi M. Geological structures of the vajont landslide. Italian Journal of Engineering Geology and Environment. 2013: 573–82. https://doi.org/10.4408/IJEGE.2013-06.B-55.
  26. Francesce R, Giorgi M, Bohm G, Bistacchi A, Bondesan A, Massironi M, et al. 3d geophysical imaging of the vajont landslide and of its surroundings. Italian Journal of Engineering Geology and Environment. 2013: 555–65. https:// doi.org/10.4408/IJEGE.2013-06.B-53.
  27. Bistacchi A, Balsamo F, Storti F, Mozafari M, Swennen R, Solum J, et al. Photogrammetric digital outcrop reconstruction, visualization with textured surfaces, and three-dimensional structural analysis and modeling: Innovative methodologies applied to fault-related dolomitization (Vajont Limestone, Southern Alps, Italy). Geosphere .2015; 11: 2031–48. https://doi.org/10.1130/GES01005.1.
  28. Petronio L, Boaga J, Cassiani G. Characterization of the Vajont landslide (North-Eastern Italy) by means of reflection and surface wave seismics. Journal of Applied Geophysics. 2016; 128: 58–67. https://doi.org/10.1016/j.jappgeo.2016.03.012.
  29. Besio M. Hydrogeological notes regarding mount Toc and vicinity. In: Semenza, E, Melidoro, G (Eds), Proceedings of the Meeting on the 1963 Vaiont Landslide, Convegno Sulla Frana Del Vaiont, Ferrara, Italy, 1986.
  30. Fabbri P, Ortombina M, Piccinini L, Zampieri D, Zini L. Hydrogeological spring characterization in the vajont area. Italian Journal of Engineering Geology and Environment. 2013: 541–53. https://doi.org/10.4408/IJEGE.2013-06.B-52.
  31. Margiotta MR. The hydrological characteristics of the vajont valley. Italian Journal of Engineering Geology and Environment. 2013: 567–72. https://doi.org/10.4408/IJEGE.2013-06.B-54.
  32. Tika ThE, Hutchinson JN. Ring shear tests on soil from the Vaiont landslide slip surface. Géotechnique. 1999; 49: 59–74. https://doi.org/10.1680/geot.1999.49.1.59.
  33. Ferri F, Di Toro G, Hirose T, Han R, Noda H, Shimamoto T, et al. Low- to high-velocity frictional properties of the clay-rich gouges from the slipping zone of the 1963 Vaiont slide, northern Italy. J Geophys Res. 2011; 116: B09208. https://doi.org/10.1029/2011JB008338.
  34. Bolla A, Paronuzzi P, Pinto D, Lenaz D, Del Fabbro M. Mineralogical and Geotechnical Characterization of the Clay Layers within the Basal Shear Zone of the 1963 Vajont Landslide. Geosciences. 2020; 10: 360. https://doi.org/10.3390/geosciences10090360.
  35. Paronuzzi P, Bolla A, Pinto D, Lenaz D, Soccal M. The clays involved in the 1963 Vajont landslide: Genesis and geomechanical implications. Engineering Geology. 2021; 294: 106376. https://doi.org/10.1016/j.enggeo.2021.106376.
  36. Habib P. Production of gaseous pore pressure during rock slides 1975.
  37. Trollope DH. The Vaiont Slope Failure. Rock Mechanics. 1980; 13: 71–88. https://doi.org/10.1007/BF01238951.
  38. Corbyn JA. Failure of a partially submerged rock slope with particular references to the Vajont rock slide. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. 1982; 19: 99–102. https://doi.org/10.1016/0148-9062(82)91635-7.
  39. Voight B, Faust C. Frictional heat and strength loss in some rapid landslides 1982.
  40. Nonveiller E. The Vajont reservoir slope failure. Engineering Geology. 1987; 24: 493–512. https://doi.org/10.1016/0013-7952(87)90081-0.
  41. Vardoulakis. Dynamic thermo-poro-mechanical analysis of catastrophic land-slides. Géotechnique. 2002; 52: 157–71.
  42. Kilburn CRJ, Petley DN. Forecasting giant, catastrophic slope collapse: lessons from Vajont, Northern Italy. Geomorphology. 2003; 54: 21–32. https://doi.org/10.1016/S0169-555X(03)00052-7.
  43. Alevizos S, Gerolymatou E, Vevakis E. Thermoporomechanics of landslides. A review of the Vaiont slide. EJECE. 2010; 14: 1185–98. https://doi.org/10.3166/ejece.14.1185-1198.
  44. Alonso EE, Pinyol NM. Criteria for rapid sliding I. A review of Vaiont case. Engineering Geology. 2010; 114: 198–210. https://doi.org/10.1016/j.enggeo.2010.04.018.
  45. Pinyol NM, Alonso EE. Criteria for rapid sliding II. Engineering Geology. 2010; 114:2 11–27. https://doi.org/10.1016/j.enggeo.2010.04.017.
  46. Del Ventisette C, Gigli G, Bonini M, Corti G, Montanari D, Santoro S, et al. Insights from analogue modelling into the deformation mechanism of the Vaiont landslide. Geomorphology. 2015; 228: 52–9. https://doi.org/10.1016/j.geo-morph.2014.08.024.
  47. Ibañez JP, Hatzor YH. Rapid sliding and friction degradation: Lessons from the catastrophic Vajont landslide. Engineering Geology. 2018; 244: 96–106. https: //doi.org/10.1016/j.enggeo.2018.07.029.
  48. Zhang H, He S, Liu W, Deng Y, Hu W. Creep-to-Runout Transition of Large Landslides Controlled by Frictional Velocity Strengthening and Weakening (Vajont 1963, Italy). Rock Mech Rock Eng. 2023; 56: 8471–83. https://doi.org/10.1007/s00603-023-03473-2.
  49. Bosa S, Petti M. Shallow water numerical model of the wave generated by the Vajont landslide. Environmental Modelling & Software. 2011; 26: 406–18. https://doi.org/10.1016/j.envsoft.2010.10.001.
  50. Crosta GB, Imposimato S, Roddeman D. Landslide Spreading, Impulse Water Waves and Modelling of the Vajont Rockslide. Rock Mech Rock Eng. 2016; 49: 2413–36. https://doi.org/10.1007/s00603-015-0769-z.
  51. Franci A, Cremonesi M, Perego U, Crosta G, Oñate E. 3D simulation of Vajont disaster. Part 1: Numerical formulation and validation. Engineering Geology. 2020; 279: 105854. https://doi.org/10.1016/j.enggeo.2020.105854.
  52. Franci A, Cremonesi M, Perego U, Oñate E, Crosta G. 3D simulation of Vajont disaster. Part 2: Multi-failure scenarios. Engineering Geology. 2020; 279: 105856. https://doi.org/10.1016/j.enggeo.2020.105856.
  53. Panizzo A, De Girolamo P, Di Risio M, Maistri A, Petaccia A. Great landslide events in Italian artificial reservoirs. Nat Hazards Earth Syst Sci. 2005; 5: 733–40. https://doi.org/10.5194/nhess-5-733-2005.
  54. Vacondio R, Mignosa P, Pagani S. 3D SPH numerical simulation of the wave generated by the Vajont rockslide. Advances in Water Resources. 2013; 59: 146–56. https://doi.org/10.1016/j.advwatres.2013.06.009.
  55. Ward SN, Day S. The 1963 Landslide and Flood at Vaiont Reservoir Italy. A tsunami ball simulation. Ollettino Della Societ à Geologica Italiana. 2011.
  56. Xu WJ, Zhou Q, Dong X-Y. SPH–DEM coupling method based on GPU and its application to the landslide tsunami. Part II: reproduction of the Vajont landslide tsunami. Acta Geotech. 2021; 17: 2121–37. https://doi.org/10.1007/s11440-021-01387-3.
  57. Xu WJ, Zhou Q, Dong X-Y. SPH–DEM coupling method based on GPU and its application to the landslide tsunami. Part II: reproduction of the Vajont landslide tsunami. Acta Geotech .2022; 17: 2121–37. https://doi.org/10.1007/s11440-021-01387-3.
  58. Xia C, Shi Z, Li B. A revisit of disaster process of Vajont rockslide using a coupled discontinuous smooth particle hydrodynamics (CDSPH) method. Landslides. 2024; 21: 197–216. https://doi.org/10.1007/s10346-023-02147-y.
  59. Manenti S, Salis N, Luo M, Todeschini S. 3d Wcsph Modelling of the 1963 Vajont. Landslide. 2024. https://doi.org/10.2139/ssrn.4815557.
  60. Mencl V. Mechanics of Landslides with Non-Circular Slip Surfaces with Special Reference to the Vaiont Slide. Géotechnique. 1966; 16: 329–37. https: //doi.org/10.1680/geot.1966.16.4.329.
  61. Chowdhury RN. Analysis of the Vaiont slide – new approach. Rock Mechanics Felsmechanik M~canique Des Roches. 1978; 11: 29–38.
  62. Paronuzzi P, Rigo E, Bolla A. A two-dimensional numerical model to analyze the strain-softening behavior of the Vajont landslide before the 1963 collapse. 2012.
  63. Paronuzzi P, Rigo E, Bolla A. A Coupled Seepage-Stability Model to Analyze the Vajont Reservoir Influence. In: Margottini C, Canuti P, Sassa K, editors. Landslide Science and Practice, Berlin, Heidelberg: Springer Berlin Heidelberg; 2013, p. 97–106. https://doi.org/10.1007/978-3-642-31319-6_14.
  64. Paronuzzi P, Rigo E, Bolla A. Influence of filling–drawdown cycles of the Vajont reservoir on Mt. Toc slope stability. Geomorphology. 2013; 191: 75–93. https://doi.org/10.1016/j.geomorph.2013.03.004.
  65. Paronuzzi P, Bolla A, Rigo E. Brittle and Ductile Behavior in Deep-Seated Landslides: Learning from the Vajont Experience. Rock Mech Rock Eng. 2016; 49: 2389–411. https://doi.org/10.1007/s00603-015-0815-x.
  66. Hungr O, Aaron J. Stability and failure behaviour of the vaiont slide. Italian Journal of Engineering Geology and Environment. 2013: 51–62. https://doi.org/10.4408/IJEGE.2013-06.B-04.
  67. Wolter A, Havaej M, Zorzi L, Stead D, Clague JJ, Ghirotti M, et al. Exploration of the kinematics of the 1963 vajont slide, italy, using a numerical modelling toolbox. Italian Journal of Engineering Geology and Environment. 2013: 599–612. https://doi.org/10.4408/IJEGE.2013-06.B-58.
  68. Boon CW, Houlsby GT, Utili S. New insights into the 1963 Vajont slide using 2D and 3D distinct-element method analyses. Géotechnique. 2014; 64: 800–16. https://doi.org/10.1680/geot.14.P.041.
  69. Havaej M, Wolter A, Stead D. The possible role of brittle rock fracture in the 1963 Vajont Slide, Italy. International Journal of Rock Mechanics and Mining Sciences. 2015; 78: 319–30. https://doi.org/10.1016/j.ijrmms.2015.06.008.
  70. Zaniboni F, Paparo A, Tinti S. THE 1963 Vajont landslide analysed through numerical modelling. Italian Journal of Engineering Geology and Environment. 2013: 623–32. https://doi.org/10.4408/IJEGE.2013-06.B-60.
  71. Zaniboni F, Tinti S. Numerical simulations of the 1963 Vajont landslide, Italy: application of 1D Lagrangian modelling. Nat Hazards. 2014; 70: 567–92. https://doi.org/10.1007/s11069-013-0828-2.
  72. Zaniboni F, Tinti S. The 1963 Vajont Landslide: A Numerical Investigation on the Sliding Surface Heterogeneity. Pure Appl Geophys. 2019; 176: 279–95. https://doi.org/10.1007/s00024-018-2023-6.
  73. Boyer RA. Etude géologique des environs de Longarone (Alpes Vénitiennes). Bull Soc Geol France. 1914; 13:.451–85.
  74. Dal Piaz G. Relazione di massima su due sezioni del Vajont prese in consid-erazione per progetti di sbarramento idraulico. Unpublished report for S.A.D.E: 1928.
  75. Ghirotti M, Masetti D, Massironi M, Oddone E, Sapigni M, Zampieri D, et al. The 1963 vajont landslide (northeast alps, italy) post-conference field trip (october 10th, 2013). Italian Journal of Engineering Geology and Environment. 2013: 635–46. https://doi.org/10.4408/IJEGE.2013-06.B-61.
  76. Semenza E, Ghirotti M. History of the 1963 Vaiont slide: the importance of geological factors. Bulletin of Engineering Geology and the Environment. 2000; 59: 87–97. https://doi.org/10.1007/s100640000067.
  77. Nonveiller E. Shear strength of bedded and jointed rock as determined from the Zalesina and Vaiont slides. 1967; 1: 289–94.
  78. Ciabatti M. La dinamica della frana del Vaiont. Giornale di Geologia. 1964; 32: 139–54.
  79. Sitar N, MacLaughlin MM, Doolin DM. Influence of Kinematics on Landslide Mobility and Failure Mode. J Geotech Geoenviron Eng. 2005; 131: 716–28. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:6(716).
  80. Veveakis E, Vardoulakis I, Di Toro G. Thermoporomechanics of creeping landslides: The 1963 Vaiont slide, northern Italy. J Geophys Res. 2007; 112: 2006JF000702. https://doi.org/10.1029/2006JF000702.
  81. Ghirotti M. Aspetti geomeccanici e modellazione numerica della frana del Vajont. Università degli Studi di Parma, 1992.
  82. Llano-Serna MA, Farias MM, Pedroso DM. An assessment of the material point method for modelling large scale run-out processes in landslides. Landslides. 2016; 13: 1057–66. https://doi.org/10.1007/s10346-015-0664-4.
  83. Skempton A. Bedding-plane slip, residual strength and the Vaiont Landslide. Géotechnique. 1966; XVI: 82–4.
  84. Pinyol NM, Alvarado M, Alonso EE, Zabala F. Thermal effects in landslide mobility. Géotechnique. 2018; 68: 528–45. https://doi.org/10.1680/jgeot.17.P.054.
  85. Superchi L. The Vajont rockslide: new techniques and traditional methods to re-evaluate the catastrophic event, 2012.
  86. Nigro G. Studio geologico e geomeccanico ed analisi numerica del lobo orientale della frana del Vajont. 2014.
  87. Rigo E. Studio geomeccanico della frana del vajont: influenza del serbatoio e meccanismo di rottura. Università degli Studi di Udine, 2014.
  88. Wolter A, Stead D, Clague JJ. A morphologic characterisation of the 1963 Vajont Slide, Italy, using long-range terrestrial photogrammetry. Geomor-phology. 2014; 206: 147–64. https://doi.org/10.1016/j.geomorph.2013.10.006.
  89. Paronuzzi P, Bolla A. Gravity-Induced Fracturing in Large Rockslides: Possible Evidence from Vajont. In: Lollino G, Giordan D, Crosta GB, Corominas J, Azzam R, Wasowski J, et al., editors. Engineering Geology for Society and Territory - Volume 2, Cham: Springer International Publishing; 2015, p. 213–6. https://doi.org/10.1007/978-3-319-09057-3_29.
  90. Chowdhury RN. Aspects of the Vajont slide. Engineering Geology. 1987; 24: 533–40. https://doi.org/10.1016/0013-7952(87)90085-8.
  91. Veveakis E, Vardoulakis I, Di Toro G. Thermoporomechanics of creeping landslides: The 1963 Vaiont slide, northern Italy. J Geophys Res. 2007; 112: F03026. https://doi.org/10.1029/2006JF000702.
  92. Burland JB. On the compressibility and shear strength of natural clays. Géotechnique. 1990; 40: 329–78. https://doi.org/10.1680/geot.1990.40.3.329.
  93. Petley D. The deformation of mudrocks. University of London. 1995.