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Abstract: In part II of this study, a second method for the prediction of the crack initiation stress was suggested. The 

new technique is based on an elementary mathematical calculus theory. Particularly, the one that supports that the 

points where the second derivative of a function is equal to zero can be considered as possible inflection points of the 
function. The proposed Second Derivative method fulfilled all the necessary criteria, that were mentioned in part I, so 

that it can further advance the research field. The method was applied to ten rock specimens, specifically eight marbles 

and two vesicular basalts, that were subjected to uniaxial compressive tests. The predicted crack initiation stresses from 

the new method were compared with those obtained from the established techniques of the existing literature. The new 

method had very close results with all other utilized methods for the marbles, thus meaning that the proposed Second 

Derivative technique can accurately and consistently determine the onset of stable crack growth for that rock type. On 

the contrary, the new method displayed a poor correlation with the other techniques for the two basalts, hence indicating 

that further tests need to be conducted in the future for that rock type. 
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1. Introduction 

In the second part of this study one more method will be suggested for 

the determination of the onset of stable crack growth. It has generally been 

accepted amongst researchers that the latter threshold can serve as a more 

realistic indicator of the in-situ spalling strength of the rock mass [1-3]. 

The new method is based on an elementary mathematical calculus theory 

and specifically the one that supports that the values where the second 

derivative of a function are equal to zero can be regarded as potential 

points of inflection of the function. The physical explanation of the 

aforementioned Second Derivative (SD) method will be thouroughly 

provided in the next section.  

Likewise with part I of the study, the SD method will be applied, and 

subsequently validated, using ten rock specimens, particulalry eight 

marbles and two vesicular basalts, which were subjected to uniaxial 

compressive tests. These two different rock types were selected in an 

attempt to test rocks of both high (vesicular basalts) and low (marbles) 

porosity, since for the most part previous studies that have dealt with the 

onset of stable crack growth of rocks have neglected high porosity rock 

type material and mainly focused on low porosity rocks. The physical 

properties (i.e. the dry density and the porosity), as well as the dimensions 

of the aforesaid samples are given in part I. Additionally, the laboratory 

set-up that was used during the ten compressive tests is also presented in 

part I. Moreover, in the previous part the mechanical properties of the 

samples, i.e. the compressive strength, Young’s modulus, and Poisson’s 

ratio, are also provided. For reference, the mean Uniaxial Compressive 

Strength (UCS) of the eight marble specimens was approximately 111.10 

MPa, with a computed standard deviation of around 18 MPa. Moreover, 

the mean value of Young’s modulus for the same rock samples was close 

to 44.78 GPa, with a standard deviation of 3.94 GPa. Furthermore, the 

mean value of Poisson’s ratio was approximately 0.33, with a standard 

deviation of just 0.068. As for the two vesicular basalts, their mean UCS 

was approximately 69.71 MPa, with a calculated standard deviation of 

about 15.47 MPa. The mean values of the two elastic constants, i.e. 

Young’s modulus and Poisson’s ratio, were 16.07 GPa and 0.155, 

respectively. Their standard deviations were around 5.49 GPa (Young’s 

modulus) and 0.007 (Poisson’s ratio). It is worth noting that in part I a brief 

litterature review is also carried out, where the majority of the existing 

empirical techniques capable of identifying the onset of stable crack 

growth are showcased. The aim of the review was mainly to mention the 

main criticism that each method has received over the years. 

Finally, the results of the SD method were compared with those 

obtained from the established techniques of the existing litterature. The 

newly suggested method displayed exceptionally close results with the 

other applied techniques for the eight marble specimens, thus meaning that 

the SD method can accurately determine the onset of stable crack growth 

for that rock type. However, the SD technique had a poor correlation with 

the other methods for the two basalts. As a result, more specimens from 

the latter rock type need to be tested in the future, in order to safely 

determine whether the newly proposed technique can consistently 

determine the Crack Initiation (CI) stress for the aforesaid rock type.  

2. Second Derivative Method 

As it was clearly stated in part I of this study: ‘’… it is easily 

comprehended that any new methods that are suggested for the 

determination of the CI threshold must fill some specific criteria, in order 

to advance the research field. Particulalry, new techniques must totally 

exclude subjective errors, possess a robust and clear physical explanation, 

while also combine easy implementation from the user. …’’. 

Consequently, having the aforesaid necesssary requirements in mind a new 

technique was developped that essentially utilizes an elementary 

mathematical calculus theorem. Subsequently, the new method mainly 

relies on the approximation that the points where the second derivative of 

a function are zero can be considered as possible inflection points of the 

function.  

Overall, the main steps of the SD technique can be summarized as 

follows. Firstly, theoretically the method can be applied using either the 

lateral or the volumetric strain curves. However, the author strongly 

suggests utilizing the lateral strain curve, because it has generally been 

accepted that the latter is more sensitive to the propagation of cracks, 

before the onset of unstable crack growth [3-6]. Additionally, the choice 

of the lateral strain curve is strongly influenced by one more factor that 

will be thouroughly discussed and mentioned below. Ultimately, the first 

step of the method involves applying a third-order polynomial fitting to 

the axial stress-lateral strain data, up until the onset of unstable crack 

growth. The third-order polynomial combines a very high value for the 

coefficient of determination (R2), and it also eliminates the possibility of 

overfitting. Hence, the aforesaid factor for the choice of the lateral strain 

curve, rather than the volumetric, lies in the fact that the latter curve cannot 

be adequately fitted using a polynomial of the third-order, mainly due to 

the unique shape of the volumetric curve (i.e. its characteristic reversal 
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point). Consequently, a higher order polynomial is needed that is very 

vulnerable to overfitting. It is worth noting that the mean coefficient of 

determination that was achieved from the third-order polynomial fitting 

for the eight marble specimens and the two basalts was around 0.9971 and 

0.9988, respectively. In Figure 1a below the application of a third-order 

polynomial fitting is showcased. In order to assure a comprehensive 

coverage the fitted lateral strain data for the ten rock specimens of the 

study are illustrated in the Appedix. In this way, the equation of the lateral 

strain curve is produced. As long as the axial stress is displayed on the y-

axis and the lateral strain on the x-axis, respectively, the equation should 

have the following general form: 

𝜎(𝜀𝑙) = 𝛼1𝜀𝑙
3 + 𝑎2𝜀𝑙

2 + 𝑎3𝜀𝑙 (1) 

where, 𝜎(𝜀𝑙): denotes the axial stress equation as a function of the lateral 

strain, 𝜀𝑙 : symbolizes the lateral strain, and 𝛼1 , 𝛼2, 𝛼3: represent the 

coefficients that are determined from the third-order polynomial fitting. 

The next step requires solving the following equation: 

𝑑2𝜎(𝜀𝑙)

𝑑𝜀𝑙
2 = 0 (2) 

where, the operator 
𝑑2

𝑑𝜀𝑙
2: denotes the second derivative of a function in 

terms of the lateral strain. The solution of the previous equation essentially 

represents the point where the second derivative of the fitted lateral strain 

curve is zero, i.e. its possible inflection point. By taking into account 

Equation (1), the previous equation can be expanded, and subsequently 

written as:   

6𝛼1𝜀𝑙 + 2𝑎2 = 0 (3) 

The previous linear polynomial equation can be easily solved 

analytically, and yield the following obvious solution: 

𝜀𝑙
1 = −

1

3

𝑎2

𝑎1

(4) 

where 𝜀𝑙
1 : denotes the solution of the linear polynomial equation. The 

previous real solution holds when the following condition is met: 

𝜀𝑙
1 < 0 (5) 

Which by taking Equation (4) into account the previous equation can be 

expanded as follows: 

𝑎2

𝑎1
> 0 (6) 

Meaning that for the condition of Equation (5) to hold it must be that 

either: 

𝑎2 > 0; 𝑎1 > 0 (6) 

or 

𝑎2 < 0; 𝑎1 < 0 (7) 

The aforesaid condition of Equation (6) is soley dependent on the 

coefficients that are obtained from the fitting. Consequently, it is clearly 

revealed why a high coefficient of determination is necessary. If the 

previous condition is not satisfied the linear equation (i.e. Equation (3)) 

produces a positive solution, and as a result higher-order polynomial fitting 

is required, more specifically a fourth-order. However this was only 

needed for one of the eight marble samples, specifically M5. Regardless 

of the order of polynomial fitting the explained procedure so far for the 

application of the SD method is exactly the same. The only difference that 

arises from the fourth-order polynomial fitting lies in the fact that the 

resulting equation that must be solved for the determination of the 

inflection points is a quadratic elementary polynomial equation that can 

yield two real solution, thus two inflection points.  

Moreover, once the inflection point is derived from Equation (4), it 

can be easily observed from the shape of the lateral strain curve that this 

should correspond to the CI stress. This inflection point is clearly 

visualized in Figure 1b below. The latter claim is justified since researchers 

have agreed that the onset of stable crack growth corresponds to the point 

of departure from linearity of the lateral strain curve [3-6]. After the 

deviation from linearity a characteristic concave segment of the curve 

commences that eventually reaches a plateau as the UCS is achieved. 

Overall, the point where the concave part is initiated (i.e. the deviation 

from linearity) can be considered as the sole inflection point of the curve, 

up until the Crack Damage (CD) stress. Ultimately, following the aforesaid 

explanation it can be safely assumed that the inflection point that is yielded 

from Equation (3) is considered to be the CI stress. 

To sum up, the steps of the suggested SD technique can be condensed 

as follows. Fit the axial stress-lateral strain data with preferably a third-

order polynomial. Validate that the condition of Equation (5) is met. If yes, 

then proceed to solve the simple linear equation (i.e. Equation (3)). If not, 

then apply a fourth-order polynomial fitting to the axial stress-lateral strain 

data and subsequently solve the resulting quadratic polynomial equation 

that is produced from the expansion of the general Equation (2). The 

solution of Equation (3) is presented in Equation (4). This is the possible 

inflection point of the curve, and can be ultimately considered as the CI 

stress. Similalry, in the case of the usage of a fourth-order polynomial 

fitting, two real solutions should be yielded from Equation (2), the smallest 

of the two can be considered as the onset of stable crack growth.  

3. Application and Validation of the Second Derivative Method 

In this section of the paper the SD method will be applied to determine 

the onset of stable crack growth of the ten rocks. These results will then be 

compared with those produced by the most frequently utilized methods of 

the existing litterature, such as the Lateral Strain Response (LSR) [3], the 

Lateral Strain Interval Response (LSIR) [6], the Volumetric Strain 

Response (VSR) [7], and the Crack Volumetric Strain (CVS) [8] methods. 

As it has already been stated in part I of this study, methods that were not 

objective (e.g. [4,9-13]) where totally excluded. Additionally, the Axial 

Crack Strain (ACS) method [14] could not be applied. Furthermore, the 

CVS method was inappropriate for the two basalts. Moreover, the Relative 

Compressive Strain Response (RCSR) method [5] yielded the same results 

as the LSR technique, thus only the last was utilized and not the latter. 

Finally, no AE monitoring methods were applied. For more information 

on the previous points it is strongly suggested to read section 6 of part I.  
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Figure 1. (a) Fitting of the lateral strain data via a third-order polynomial; (b) the sole inflection point of the lateral strain curve, up until the CD stress.  

Similalry, to part I the difference in CI to UCS ratio value between the 

SD method and the other aforesaid techniques was calculated. These 

differences, along with the CI stress threshold that was determined from 

the new SD method for each specimen is presented in Table 1 below. The 

mean computed difference between the SD and the LSR method for the 

eight marbles and two basalts was around 5.84 % and 23.03 %, 

respectively. In addition, the mean difference between the new method and 

the LSIR technique for the same rock samples was close to 3.31 % and 

45.05%. As for the mean difference between the SD and the VSR 

technique it was calculated to approximately 6.57 % for the marbles, and 

5.25 % for the basalts. Finally, the mean difference between the SD and 

the CVS method was close to 3.49 % for the eight marble samples. From 

the aforementioned differences it is made clear that the newly suggested 

SD method yielded close results with all other utilized empirical 

techniques for the eight marble specimens, and relatively poor results with 

all methods apart from the VSR technique for the two vesicular basalts. 

Finally, in Table 1 the standard deviation for the two rock types is 

thouroughly presented.      

4. Discussion 

From the simple statistical analysis of the previous section, it was 

evidently apparent that the SD technique had very close results with the 

LSR, the LSIR, the VSR, and the CVS methods for the eight marble 

specimens. As a result, it can be safely assumed that the newly proposed 

method can accurately and consistently predict the onset of stable crack 

growth of marbles. However, an especially poor correlation was observed 

between the SD method and the LSR and LSIR techniques for two basalts. 

While the new mathematical method displayed close results with the VSR 

method for the same rock type. Consequently, it is questionable at best if 

the SD method can accurately determine the onset of stable crack growth 

for the current rock type. 

As it was extensively analyzed in part I the VSR method was rendered 

inappropriate for the prediction of the CI stress threshold for the two 

basalts, due to the unique shape of the volumetric strain curves that the 

latter two samples displayed. Particularly, owing to their shape the 

maximum difference between the reference line and the volumetric strain 

curve does not correspond to the deviation from linearity (i.e. the CI 

stress), but rather to a point very close to the CD stress. Subsequently, the 

fact that the SD method has very close results with the VSR method, which 

is known to have erroneous CI thresholds, for the vesicular basalts, 

ultimately reveals that the latter method cannot accurately determine the 

onset of stable crack growth for the given two specimens. Additionally, 

another factor that justifies the previous claim is that the LSR technique 

should supposedly predict the CI stress accurately, because the stiffness of 

the elastic part of the lateral strain curve was greater than the slope of the 

reference line for both specimens. Hence, the large differences between 

the SD and the LSR methods further highlights the inability of the new 

technique to predict the CI stress correctly for the two vesicular basalts.  

However, as it was explicitly stated in part I the other frequently 

utilized techniques, such as the LSR, the LSIR, and the VSR methods, 

were applied and subsequently validated using rocks of low porosity. 

Particularly, for the LSR method diorites were tested, for the LSIR 

technique marbles, granites, and sandstones were utilized, and for the VSR 

method limestone samples were studied. Consequently, none of the 

frequently applied techniques of the existing litterature tested rocks of high 

porosity, and specifically vesicular basalts, thus possibly meaning that they 

may produce inconsistent results for the latter rock type. The previous 

claim can be easily observed by the very large dispersion of values for the 

CI stress predicted by the above stated methods. Particulalry, the mean 

values of the CI stress for basaltic specimens B1 and B2 were 

approximately 37.56 MPa and 48.70 MPa, respectively. The computed 

standard deviations were exceedingly high with B1 having around 11.89 

MPa, while B2 had close to 16.52 MPa. Therefore, some serious questions 

arise as to which method utlimately determines the onset of stable crack 

growth of the previous rock type correctly. As a result, in future research 

efforts more vesicular basalts need to be tested, in order to fully 

acknowledge which of the available techniques, including the newly 

suggested SD method, can accurately predict the CI stress for the latter 

rock type, because in the present paper only a small number of specimens 

were available.  

Although the SD method had very close results with the other 

empirical techniques for the marble samples it has a notable limitation. 

Specifically, its accuracy is heavily influenced by the precision of the 

polynomial fitting of the lateral strain data, and particulalry the coefficient 

of determination. This issue is mostly combatted by applying a third-order 

polynomial fitting that combines a high value for the coefficient of 

determination, and also excludes the possibility of overfitting. In only one 

case, a higher-order polynomial, a fourth-order, was necessary in order to 

satisfy a condition between the coefficients determined from the fitting. 

Third-order and fourth-order polynomials have been previously used in the 

litterature for the fitting of the curves that have been obtained by 

compressive tests (e.g. [15,16]), as a means to secure a high value for the 

coefficient of determination.  

5. Conclusions 

In part II of this study, a new method for the determination of the onset 

of stable crack growth was suggested using an elementary mathematical 

calculus theory. Particularly, the new Second Derivative (SD) method was 

based on the theorem that states that the points where the second derivative 

of a function are equal to zero, can be considered as possible inflection 

points of the function. Generally, the SD technique firstly involved fitting 

the axial stress (y-axis)-lateral strain (x-axis) data, up until the CD stress, 

with a third-order polynomial that combined an adequate coefficient of 

determination and eliminated the possibility of overfitting. Once the 

function of the lateral strain curve is obtained it must be validated that the 

condition of Equation (5) does indeed hold. This equation is soley 

dependent on the coefficients that are produced from the fitting, hence it is 

of the utmost importance to utilize a reliable software for the third-order 

polynomial fitting, e.g. MATLAB’s curve fitter tool; CurveExpert 

Professional [17]. If the condition is met, the real solution of Equation (2) 

is given by Equation (4). If not, a fourth-order polynomial fitting should 

be applied to the lateral strain data, and Equation (2) must be solved using 

the new function. The resulting equation from the expansion of Equation 

(2) is a quadratic polynomial equation that should produce two real 

solutions. The aforesaid solution, or solutions, of Equation (2), regardless 

of the order of polynomial fitting, are the possible inflection points of the 

function. Finally, by observing the form of the lateral strain curve is can 

be clearly seen that the only inflection point of the curve, prior to the onset 

of unstable crack growth, is the point from deviation from linearity, hence 

the CI stress.  

Table 1. The predicted CI stress threshold using different methods. 

Rock Specimen  
CD  SD  LSR  LSIR VSR CVS 

(MPa) CI (MPa) CI (MPa) Difference (%) CI (MPa) Difference (%) CI (MPa) Difference (%) CI (MPa) Difference (%) 

M1 28.20 22.00 19.34 2.25 19.34 2.25 9.54 10.54 19.34 2.25 

M2 29.33 21.99 8.57 12.13 23.75 1.59 9.38 11.40 19.58 2.18 

M3 26.13 19.34 9.12 8.35 18.06 1.05 9.04 8.41 18.06 1.05 

M4 24.69 13.34 5.70 9.04 5.70 9.04 7.36 7.07 15.82 2.93 

M5 31.35 5.40 12.46 4.95 19.54 9.92 9.42 2.82 17.42 8.43 

M6 18.73 9.43 9.43 0.00 8.11 1.27 8.13 1.25 12.53 2.97 

M7 23.94 17.74 9.32 9.09 17.34 0.43 8.32 10.17 15.43 2.49 

M8 15.90 7.01 8.05 0.92 8.05 0.92 5.99 0.90 13.36 5.59 

B1 54.08 48.59 34.42 24.11 22.17 44.95 45.05 6.02 - - 

B2 70.18 63.13 45.43 21.95 26.72 45.15 59.52 4.48 - - 

Mean Marbles 24.78 12.36 10.25 5.84 14.99 3.31 8.40 6.57 16.44 3.49 

Mean Basalts 62.13 55.86 39.93 23.03 24.45 45.05 52.29 5.25 - - 

SD Marbles 5.26 6.51 4.12 4.45 6.69 3.85 1.24 4.31 2.62 2.38 
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SD Basalts 11.38 10.28 7.79 1.53 3.22 0.13 10.23 1.09 - - 

The SD technique was utilized to determine the CI stress of eight 

marbles and two vesicular basalts. Its results were also compared with 

those obtained from the established empirical methods of the existing 

literature, i.e. the LSR, the LSIR, the VSR, and the CVS methods. 

Particularly, the results between the SD and all the aforesaid methods were 

exceptionally close for the eight marble samples with the overall 

calculated mean difference across all the methods being approximately 

4.80 %. Hence, it was made clear that new mathematical-based technique 

could accurately determine the onset of stable crack growth of that rock 

type. On the other hand, the SD method showcased very augmented 

differences with all the other methods, apart from the VSR technique, for 

the two basalts. Consequently, the fact that the SD and the VSR methods 

had similar results ultimately revealed that the latter did not predict the CI 

threshold correctly, because it was extensively analyzed in part I that the 

VSR method produced erroneous results, due to the unique shape of the 

volumetric strain curves of the specimens. Moreover, the inaccurate CI 

stress thresholds that the SD technique produced for the two basalts were 

also apparent due to very large differences that it displayed with the LSR 

technique. The LSR method should theoretically determine the previously 

mentioned threshold correctly, since the stiffness of the elastic part of the 

lateral strain curve was greater than the slope of the reference line for both 

samples. Therefore, the SD technique failed to flawlessly determine the 

onset of stable crack growth of the vesicular basalts. In future research 

efforts more vesicular basalts should be tested, in order to safely come to 

the conclusion whether the newly suggested method can consistently 

determine the CI stress of that rock type or not.  

Overall, the CI stress value has a tremendous practical importance for 

underground works, such as tunnels, shafts etc, since researchers have 

concluded that it can serve as a much more realistic threshold for the in-

situ spalling strength of the rock mass. Consequently, its accurate 

prediction from laboratory data can serve as a very powerful tool both in 

the preliminary stages of the project’s planning and also during its main 

excavation and construction phase, because the down-times due to 

extended failures of the surrounding rock mass will be for the most part 

diminished. Over the past six decades researchers have proposed a great 

variety of empirical techniques that can predict the CI threshold with each 

showcasing its unique strengths and weaknesses. For reference, these were 

briefly analyzed in part I of this study. As a result, the aforementioned 

plethora of methods that are available in the litterature can sometimes 

cause confusion as to which method is more appropriate for a certain rock 

type, loading condtion (i.e. uniaxial, biaxial, triaxial conditions), and 

physical properties of the rock, such as porosity. To sum up, the author 

strongly agrees with the following statement of Nicksiar and Martin [3]: 

‘’… Given the importance of establishing laboratory testing procedures 

that can be used for estimating in situ strength, it is proposed that the ISRM 

Suggested Methods develop standardized procedures for establishing 

crack initiation from laboratory stress-strain data. …’’. The previous 

suggestion was published approximately 13 years ago, to the author’s 

knowledge no steps have been made to fulfil this very accurate proposal. 
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Appendix A1 

In Figure 2 below the fitted lateral strain data, along with their 

respective polynomial functions and their coefficients of determination, 

are presented for the ten tested rock samples. It should be noted that the 

fittings were carried out using the CurveExpert Professional [17] software. 
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Figure 2. Fitted lateral strain curves of (a) M1; (b) M2; (c) M3; (d) M4; (e) M5; (f) M6.  

  

Figure 2. (continued) (g) M7; (h) M8; (i) B1; (j) B2. 

 


