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Abstract: The determination of reserved deformation is typically based on referring to relevant codes or the engineering 

analogy method, lacking a certain theoretical approach. The purpose of this study is to provide a theoretical basis for 

determining reserved deformation and to analyze the variation law of the surrounding rock affected by reserved defor-
mation. Considering the reserved deformation under the condition of asymmetric load, the expression of optimal re-

served deformation, the expression of support resistance reflecting the strength of surrounding rock, the strength of 

support material and the magnitude of in situ stress, the displacement expression of surrounding rock are derived by 

approximate solution based on the classical elastic–plastic theory. Numerical simulation software is used to simulate 

the displacement expression of the surrounding rock considering the reserved deformation and the expression of the 

optimum reserved deformation under the condition of asymmetric load. The results of the numerical simulation were 

compared with those of the analytical solutions, and the analytical results show that the errors between the two are 

within 12% and that the consistency is good. 
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1. Introduction 

In recent years, with the continuous development of geotechnical 

engineering towards deeper regions, more and more tunnels have 

experienced large deformation problems [1, 2]. Weak surrounding rock 

tunnel areas often show the characteristics of large deformation of initial 

support, strong rheology and poor self-stability of surrounding rock, 

complex tectonics and large tectonic stress [3]. To control the deformation 

of the soft rock tunnels, many scholars have proposed different support 

schemes [4–8]. Among them, setting reserved deformation is a commonly 

used support method in soft rock support systems. Setting a reserved 

deformation can control the displacement of the surrounding rock in a 

certain extent, the pressure of the surrounding rock can be released, and 

then reducing the support resistance [9]. In addition, considering the 

construction clearance of a tunnel, to a certain extent, the setting of 

reserved deformation can also ensure that there will be no intrusion of the 

support and that the clearance of the tunnel meets the design requirements. 

If the reserved deformation is too small and the deformation of the 

surrounding rock is greater than the reserved deformation, it will result in 

insufficient clearance of the tunnel. However, if the reserved deformation 

is too large, it will lead to the over-excavation of rock and increase 

construction costs. Therefore, during the construction of a soft rock tunnel, 

it is of great significance to study the excavation deformation law of 

surrounding rock, determine reasonable reserved deformation. 

Actual engineering monitoring data can more accurately reflect the 

deformation characteristics of the surrounding rock [10]. By monitoring 

the displacement of the surrounding rock, the degree of damage to the 

surrounding rock, and the stress of the support structure, the monitoring 

data can be used to analyze and study the mechanism of the large 

deformation and failure of soft rock [11, 12]. aboratory model testing is a 

common method for studying the large deformation of soft rock [13, 14]. 

Through model experiments, the creep deformation and failure 

characteristics of soft rock tunnels under combined support conditions can 

be analysed [15]. Different conditions can also be set to analyse the 

deformation and stress changes of tunnels under different geological 

conditions [16]. It is possible to analyse the control effects of different 

support measures on large deformation of surrounding rock [15, 17, 18] 

and analyse relevant influencing factors [19]. With the rapid development 

of computer technology, many numerical simulation calculation software 

programs have emerged, such as FLAC 3D [20, 21], ANAYS [22, 23], and 

ABQUES [24, 25]. Therefore, scholars also use numerical simulation 

software to analyse the laws of the large deformation of soft rock. However, 

the construction of a theoretical model is the theoretical basis for analysing 

the deformation and failure mechanisms of the surrounding rock. Scholars 

have also used theoretical modelling methods to study the deformation 

mechanism of soft rock. There are many existing models for analysing the 

large deformation of soft rock [26]. These include an elastic–plastic 

constitutive model of soft rock with strain softening [27], Alejano and 

Alonso’s model [28], Walton et al.’s model [29] and Rahjoo and 

Eberhardt’s model [30]. By establishing a mechanical model of the tunnel 

excavation-support process, an analytical solution can be obtained 

between the stress and displacement of the surrounding rock [31], and the 

contact friction slip contact problem between the surrounding rock and the 

lining can be analysed [32]. Based on the above research status, it can be 

concluded that scholars mainly analyse the failure mechanism of large 

deformation of soft rock through laboratory and field tests, on-site 

monitoring, numerical simulation and the establishment of relevant 

constitutive models. 

However, the research of reserved deformation only focuses on 

providing a range of values for reserved deformation under different 

working conditions for different projects. Ma Zhaolin and Wang Yue [33] 

relied on the data of Gu-chengling tunnel of Baoji-Lanzhou Railway Line 

for passenger traffic and used FLAC 3D software to predict the 

deformation of the initial support structure and optimized the design 

reserve deformation of the tunnel. Yang Wenhu [34] conducted a 

comprehensive evaluation of the deformation of the surrounding rock of 

Jiufengshan Tunnel through data statistics, and determined the reasonable 

range of reserved deformation for Jiufengshan Tunnel. Yu Weigang [35] 

et al. studied the reserved deformation of the Baima Tunnel by using 

probability and statistical methods under different support parameters. Liu 

Jian [36] et al. analyzed 148 monitoring section data of tunnels with 

different types of loess soil, and obtained recommended values for the 

reasonable design of reserved deformation in loess tunnels. So at present, 

the reserved deformation is mainly determined based on engineering 

analogy, reference to relevant standards and numerical simulation methods. 

However, different designers may have certain deviations in determining 

the reserved deformation due to their different work experiences, and this 

method does not have a theoretical basis. At present, classical elastic–

plastic theory is often applied to analyse the deformation and failure laws 

of surrounding rock in caverns [31]. There is no established theoretical 

expression of the relationship between reserved deformation and the 

support system. Therefore, this article aims to derive an expression for the 

reserved deformation from the perspective of analytical solutions, to 
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provide a theoretical basis for determining the reserved deformation. 

According to the expression of the reserved deformation, the 

corresponding reserved deformation can be obtained by substituting the 

relevant surrounding rock parameters, crustal stress conditions, and 

support strength parameters. Through equation substitution, the expression 

of the variation of the surrounding rock displacement with the reserved 

deformation can be obtained. Thus, the impact of the reserved deformation 

on the displacement of the surrounding rock can be analysed. 

In response to the problems mentioned above, according to classical 

elastic–plastic theory, this article uses approximate solutions to transform 

the plane problem of surrounding rock under non-axisymmetric conditions 

into a plane problem under axisymmetric conditions. Therefore, the 

displacement expression of the surrounding rock considering reserved 

deformation under non-axisymmetric conditions, the expression of 

reserved deformation, and the expression of support resistance are solved. 

To have a clearer understanding of which influencing factors affect the 

reserved deformation, an analysis of the influencing factors was conducted 

on the expression of the reserved deformation. Subsequently, based on 

numerical simulation experiments, the variation laws and errors between 

the numerical and analytical solutions of the reserved deformation 

expression and the displacement expressions of surrounding rock 

considering reserved deformation were compared and analysed. The 

purpose of this study is to provide a theoretical basis for determining 

reserved deformation and to analyse the variation law of the surrounding 

rock affected by reserved deformation. 

2. Elasto-plastic solution of circular cavity under non-axisymmetric 

conditions 

When the rock is excavated, the initial stress state is destroyed and 

resulting in stress adjustments [37]. In a certain area of the tunnel wall, the 

adjusted stress generally exceeds the elastic limit of the rock mass. At this 

point, the rock mass near the tunnel wall will enter a plastic state, while 

the rock mass far away from the tunnel wall will gradually transition to an 

elastic state, as shown in Figure 1 [38].  

In the construction process of soft rock tunnels, reserved deformation 

is a special support method. The size of the reserved deformation 

determines the excavation radius and stress adjustment range of the tunnel. 

However, many classic analytical solutions do not involve the problem of 

reserved deformation. Therefore, based on the elastic–plastic solution 

derived by predecessors for circular cavities, this article derives the 

relevant analytical solution for circular cavities considering the reserved 

deformation.  

However, in construction, the geological conditions of the surrounding 

rock are complex and variable. When conducting theoretical analysis and 

research, it is necessary to simplify the surrounding rock conditions. If the 

spacing between structural planes or joints in the rock mass is relatively 

wide, structural planes or joints are tightly closed, and the stress value of 

the surrounding rock is less than half of the compressive strength of the 

rock mass, the surrounding rock can be approximately judged as an elastic 

rock mass [39]. so the following assumptions are made: 

(1) The surrounding rock is homogeneous, isotropic and continuous. 

(2) The influence of gravitational acceleration is neglected under 

sufficiently large burial depth conditions. 

(3) Since the tunnel is long enough, the plane problem of the tunnel 

can be considered a plane strain problem. 

 

Fig. 1. Sketch of tunnel mechanical analysis model 

2.1. General and approximate solutions under non-axisymmetric 

conditions 

In practical engineering, the loads on tunnels are often non-

axisymmetric. Therefore, for circular cross-section tunnels, under non-

axisymmetric load conditions, the stress and deformation at a point in the 

surrounding rock are related to the position, so the stress and displacement 

at that point are functions of r and θ. Then the equilibrium differential 

equation is as follows 

{

𝜕𝜎𝑟
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+
1
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𝜕𝜏𝑟𝜃
𝜕𝜃

+
𝜎𝑟 − 𝜎𝜃
𝑟

= 0

1

𝑟

𝜕𝜎𝜃
𝜕𝜃

+
𝜕𝜏𝑟𝜃
𝜕𝑟

+
2𝜏𝑟𝜃
𝑟

= 0

(1) 

According to the molar strength criterion, the yield conditions that the 

surrounding rock needs to meet are as follows 

4𝜏𝛾𝜃
2 = (𝜎𝜃 𝑠𝑖𝑛 𝜑 + 𝜎𝑟 𝑠𝑖𝑛 𝜑 + 2𝐶 𝑐𝑜𝑠 𝜑)

2 − (𝜎𝜃 − 𝜎𝑟)
2 (2) 

where σr, σθ, τrθ is an unknown quantity. 

According to the relevant boundary conditions, it should be possible 

to calculate the stress component of the plastic zone, but the solution is 

more difficult. When the tunnel is under non-axisymmetric load conditions, 

an elliptical plastic zone will appear in the surrounding rock and the 

surrounding strata in the plastic zone will gradually become uniform. At 

this time, the unequal pressure of the original rock stress can be converted 

according to equation (3) [40]. Through the equivalent transformation of 

stress in equation (3), the tunnel problem under non-axisymmetric load 

conditions can be simplified as an axisymmetric problem under hydrostatic 

pressure and plane strain conditions 

𝜎0 =
1 + 𝜆

2
𝑃𝜈 (3) 

where σ0 is the equivalent stress; λ is the ratio of horizontal stress and 

vertical stress of surrounding rock, i.e. the lateral coefficient of earth 

pressure; and Pv is the vertical stress. Therefore, this article simplifies the 

non-axisymmetric load condition to an axisymmetric load condition based 

on equation (3) and conducts a relevant solution analysis based on the 

solution ideas under axisymmetric conditions. 

2.2. Solution of relevant expressions under non-axisymmetric conditions 

In classical elastic–plastic theory, the expression for the stress field in 

the plastic zone is 

{
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(4) 

The stress field of the surrounding rock in the elastic zone is as follows 

{
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(5) 

Due to the condition that the stress on the boundary of the elastic and 

plastic regions is equal, the following can be obtained 

𝜎𝑟
𝑝
+ 𝜎𝜃

𝑝
= 𝜎𝑟

𝑒 + 𝜎𝜃
𝑒 = 2𝜎0 (6) 

Bringing the stress component of the plastic zone, i.e. equation (4), 

into equation (6), equation (7) can be solved as follows 

𝑅0 = 𝑎 [
(𝜎0 + 𝐶𝑐𝑜𝑡𝜑)(1 − sin𝜑)

𝑝𝑖 + 𝐶𝑐𝑜𝑡𝜑
]

1−sin𝜑
2sin𝜑

(7) 

Equation (7) represents the radius of the plastic zone under an 

axisymmetric loading condition. Referring to the approximate solution 

method of equation (3), bringing σ0=[(1+λ)/2]Pv into equation (7) can 

obtain the plastic zone radius under non-axisymmetric conditions as 

follows 

𝑅0 = 𝑎 [
(
1 + 𝜆
2

𝑃𝑣 + 𝐶𝑜𝑡𝜑) (1 − sin𝜑)

𝑝𝑖 + 𝐶𝑐𝑜𝑡𝜑
]

1−sin𝜑
2sin𝜑

(8) 

Transforming equation (8) into an equation, the support resistance pi 

can be solved as follows 
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a
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𝑝𝑖 = (
1 + 𝜆

2
𝑃𝑣 + 𝐶𝑜𝑡𝜑) (1 − 𝑠𝑖𝑛 𝜑) (

𝑎

𝑅0
)

2 𝑠𝑖𝑛𝜑
1−𝑠𝑖𝑛𝜑

− 𝐶𝑜𝑡𝜑 (9) 

Equation (9) is the famous modified Finner formula. It can be seen 

from equation (9) that under the condition of a non-axisymmetric load, the 

support resistance pi is related to vertical pressure Pv, lateral pressure 

coefficient λ, plastic zone radius R0, cohesive force C of surrounding rock 

in the plastic zone, internal friction angle φ, and tunnel radius a. 

In the stage of elastic–plastic deformation, the stress and strain are 

nonlinear in the plastic zone, so the constitutive equation of the 

surrounding rock cannot be expressed by the generalized Hooke’s law. The 

common method for calculating the displacement expression is to use the 

relationship between the average stress σm and the average strain εm, 

multiply that by the plastic modulus ψ, and assume that the volumetric 

strain in the plastic zone is zero; the displacement of the surrounding rock 

in the plastic zone can be obtained [41]. In equation (10), Genka proposed 

using G’=G/ψ
 

instead of G to obtain the elastic–plastic constitutive 

relationship, abbreviated as the Genka equation [42] as follows 

{
 
 

 
 𝜀𝑟 =

𝛹

2𝐺
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𝛹
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𝛹

𝐺
𝜏𝑧𝑟

(10) 

where ψ is the plastic modulus representing the nonlinear relationship 

between average stress and average strain. The problem of a section of a 

tunnel is simplified to a plane strain problem in the analysis, so 

εz=γθz=γzr=0, then there are: 

𝜎𝑚 = (𝜎𝑟 + 𝜎𝜃)/2 (11) 

The elastic–plastic constitutive relation under plane strain problem can 

be obtained by substituting equation (12) into equation (11) as follows 

{
 
 

 
 𝜀𝑟 =

𝛹

4𝐺
(𝜎𝑟 − 𝜎𝜃)

𝜀𝜃 =
𝛹

4𝐺
(𝜎𝜃 − 𝜎𝑟)

𝛾𝑟𝜃 =
𝛹

𝐺
𝜏𝑟𝜃

(12) 

On the boundary of the elastic and plastic zones, there is ψ=1. By 

solving geometric equations under axisymmetric loading conditions, 

equation (13) can be obtained as follows 

𝜀𝜃 = 𝐴𝑟−2 (13) 

where A is the integration constant. After substituting equation (13) into 

equation (12), and then bringing in equation (4), equation (13) can be 

obtained as follows 

𝐴 =
𝑅0
2

4𝐺
(𝑝𝑖 + 𝐶𝑐𝑜𝑡𝜑)(

2 sin𝜑

1 − sin𝜑
) (
𝑅0
𝑎
)

2 sin𝜑
1−sin𝜑

(14) 

Substituting the modified Finner equation (9) into equation (14), we 

have 

𝐴 =
𝑅0
2

2𝐺
(𝜎0 + 𝐶𝑐𝑜𝑡𝜑) sin𝜑 (15) 

Bringing equation (15) into equation (13) and then into the geometric 

equation εθ=μ/r, the expression of calculating elastic–plastic displacement 

of the circular tunnel under axisymmetric conditions can be obtained as 

follows 

𝑢𝑝 = 𝑟𝜀𝜃 =
𝐴

𝑟
=
𝑅0
2

2𝐺𝑟
(𝜎0 sin𝜑 + 𝐶𝑐𝑜𝑡𝜑) (16) 

Substituting σ0=[(1+λ)/2]Pv

 
 into equation (16), the expression of 

elastic–plastic displacement of the circular tunnel under asymmetric 

conditions can be obtained as follows 

𝑢𝑝 =
𝑅0
2

2𝐺𝑟
(
1 + 𝜆

2
𝑃𝑣 sin𝜑 + 𝐶𝑐𝑜𝑡𝜑) (17) 

Equation (17) shows that displacement up of plastic zone of the 

surrounding rock is related to radius R0 of plastic zone, the mechanical 

parameter C, φ and G of the surrounding rock, lateral pressure coefficient 

λ and vertical pressure Pv. 

In this section, the relevant expressions for the plane problem of the 

surrounding rock under non-axisymmetric conditions are derived by the 

approximate solution method. Based on the expressions derived above, the 

derivation of the elastic–plastic solution of the circular cavity considering 

the reserved deformation can be further carried out. 

3. Elasto-plastic solution of circular cavity considering reserved de-

formation 

Setting reserved deformation is a commonly used support method in 

soft rock support systems. Setting appropriate reserved deformation can 

release a certain degree of surrounding rock pressure, control the 

displacement of surrounding rock, reduce support resistance, and improve 

the safety reserve of the secondary lining [9]. During the construction of 

soft rock tunnels, it is of great significance to study the excavation 

deformation law of surrounding rock, determine reasonable reserved 

deformation, and guarantee the stability of tunnel chambers. Therefore, 

based on the simplified expressions under non-axisymmetric load 

conditions, the following section will solve the elastic–plastic expression 

for circular cavities, considering the reserved deformation. 

3.1. Solution of displacement expression for surrounding rock 

Before deriving the expression, it is necessary to have a clear 

understanding of the reserved deformation. We all know that the suppoet 

system of thnnel gennelly include the initial suppot and the secondary 

lining. In order to prevent the large deformation of surrounding rock, a 

space usually is reserved between the initial support and the secondary 

lining. The space usually call reserved deformation, as shown in Figure 2. 

 

Fig. 2. Schematic diagram of expected deformation in a soft rock support 

system 

If the reserved deformation is set between the initial support and the 

secondary lining, the clearance of the tunnel section will be reduced. To 

meet the construction clearance requirements of the tunnel, the original 

excavation section of the tunnel design needs to be expanded, which is 

equal to the designed reserved deformation. In the large deformation 

support system of soft rock, if the reserved deformation is set as m, the 

excavation radius of the tunnel changes from a to m+a, so the expression 

of plastic radius, i.e. equation (8), can be rewritten as follows 

𝑅0 = (𝑚 + 𝑎) [
(
1 + 𝜆
2

𝑃𝑣 + 𝐶𝑐𝑜𝑡𝜑) (1 − sin𝜑)

𝑃𝑖 + 𝐶𝑐𝑜𝑡𝜑
]

1−sin𝜑
sin𝜑

(18) 

Substituting equation (18) into the expression of displacement of 

plastic zone under asymmetric load, i.e. equation (17), the displacement of 

plastic zone can be obtained as follows: 

𝑢𝑝 =
(𝑚 + 𝑎)

2𝐺𝑟
sin𝜑 (

1 + 𝜆

2
𝑃𝑣 + 𝐶𝑐𝑜𝑡𝜑)                         

                          × [
(
1 + 𝜆
2

𝑃𝑣 + 𝐶𝑐𝑜𝑡𝜑) (1 − sin𝜑)

𝑃𝑖 + 𝐶𝑐𝑜𝑡𝜑
]

1−sin𝜑
sin𝜑

(19)

 

There is r=m+a at the tunnel wall, so the displacement at the tunnel 

wall is as follows 

Secondary lining
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Initial support

Actual excavation

profile of the tunnel

Design inner
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𝑢0 =
(𝑚 + 𝑎)(

1 + 𝜆
2

𝑃𝑣 + 𝐶𝑐𝑜𝑡𝜑) sin𝜑

2𝐺
                           

                        × [
(
1 + 𝜆
2

𝑃𝑣 + 𝐶𝑐𝑜𝑡𝜑) (1 − sin𝜑)

𝑃𝑖 + 𝐶𝑐𝑜𝑡𝜑
]

1−sin𝜑
sin𝜑

(20)

 

From equation (20), it can be seen that the displacement u0 of 

surrounding rock is determined by the in vertical stress Pv, support 

resistance pi, lateral pressure coefficient λ, original radius a of the tunnel 

and the reserved deformation m, support resistance pi, mechanical 

parameters C, φ and G of the surrounding rock. 

When the support resistance pi is a fixed value, the trend of 

displacement u0 of surrounding rock at the tunnel wall along with the 

reserved deformation m is plotted, as shown in Figure 3. 

 

Fig. 3. Trend diagram of surrounding rock displacement with reserved 

deformation 

The dotted red line in Figure 3 is the angular bisector, and the points 

on the angular bisector indicate that the displacement u0 of surrounding 

rock and the reserved deformation m are equal. It can be seen that with the 

increase of reserved deformation m, the displacement u0 of surrounding 

rock will gradually increase. If the displacement u0 of surrounding rock is 

above the angular bisector, u0 is greater than m, indicating that the tunnel 

has an intrusion limit. If u0 is below the angular bisector, it is less than m, 

indicating that the tunnel is over-excavated. If u0 is located on the angular 

bisector, i.e. at the intersection point m0 of the solid line and the dashed 

line, then u0 equals m, indicating that there is neither over-excavation nor 

intrusion in the tunnel. 

3.2. Solution for optimal reserved deformation 

The purpose of setting the reserved deformation m is to prevent the 

surrounding rock from intruding into the design contour and to reduce the 

project costs. The results of Figure 3 show that when u0=m0, neither 

intrusion nor over-excavation occurs in the tunnel. Therefore, under the 

action of support resistance pi, when the displacement u0 of surrounding 

rock just reaches the optimum reserved deformation m0, the surrounding 

rock is stable and no displacement occurs. At this time, it is considered that 

the reserved deformation is the most reasonable. Therefore, ideally, the 

following assumptions can be made. 

(1) The displacement of the surrounding rock does not occur after 

reaching the optimal reserved deformation m0, and the surrounding rock is 

stable. 

(2) The value of support resistance pi is a fixed value and does not 

change with the change of the surrounding rock stress field. 

Based on the above assumptions, it can be inferred that if the optimal 

reserved deformation m0 was set, the tunnel radius will change from a to 

a+m. After the tunnel was supported, the maximum displacement of the 

surrounding rock is reserved deformation, and it can be obtained that: 

𝑢0 = 𝑚0 (21) 

By substituting equation (21) into the expression (20) for the 

displacement u0 of surrounding rock, it can be obtained 

that

𝑚0 =
(𝑚0+𝑎)

2𝐺
(
1+𝜆

2
𝑃𝑣 + 𝐶𝑐𝑜𝑡𝜑) sin𝜑 × [

(
1+𝜆

2
𝑃𝑣+𝐶𝑐𝑜𝑡𝜑)(1−sin𝜑)

𝑃𝑖+𝐶𝑐𝑜𝑡𝜑
]

1−sin𝜑

sin𝜑

(22) 

According to the basic properties of the equation, the optimum 

reserved deformation m0 can be solved using equation (22) as follows 

𝑚0 =
(
1 + 𝜆
2

𝑃𝑣 + 𝐶𝑐𝑜𝑡𝜑)𝑎 sin𝜑

2𝐺 − (
1 + 𝜆
2

𝑃𝑣 + 𝐶𝑐𝑜𝑡𝜑) sin𝜑
                                         

                          ×

[
(
1 + 𝜆
2

𝑃𝑣 + 𝐶𝑐𝑜𝑡𝜑) (1 − sin𝜑)

𝑃𝑖 + 𝐶𝑐𝑜𝑡𝜑
]

1−sin𝜑
sin𝜑

[
(
1 + 𝜆
2

𝑃𝑣 + 𝐶𝑐𝑜𝑡𝜑) (1 − sin𝜑)

𝑃𝑖 + 𝐶𝑐𝑜𝑡𝜑
]

1−sin𝜑
sin𝜑

                   (23)

⬚

 

Assume that 

{
𝛼 =

1 + 𝜆

2
𝑃𝑣 + 𝐶𝑐𝑜𝑡𝜑

𝛽 = 1 − sin𝜑
(24) 

Then equation (24) can be simplified to 

𝑚0 =
𝛼 sin𝜑 (

𝛼𝛽
𝑃𝑖 + 𝐶𝑐𝑜𝑡𝜑

)

𝛼
sin𝜑

2𝐺 − 𝛼 sin𝜑 (
𝛼𝛽

𝑃𝑖 + 𝐶𝑐𝑜𝑡𝜑
)

𝛼
sin𝜑

𝑎 (25) 

Equation (25) is the expression of the optimal reserved deformation 

m0 of the surrounding rock in an elastic–plastic state. From equation (25), 

it can be seen that the optimum reserved deformation m0 is related to the 

in situ stress Pv, support resistance pi, lateral pressure coefficient λ, original 

radius a of tunnel, and mechanical parameters C、φ、G of surrounding 

rock. 

3.3. Solution to support resistance 

In the design stage of the tunnel, the support resistance pi is unknown, 

so it is necessary to determine the reserved deformation m0 in advance to 

design the relevant support structure. If the displacement of the 

surrounding rock at the tunnel wall is equal to the reserved displacement 

m0, then there is u0=m0. Substituting u0=m0 into equation (17), there is: 

𝑚0 =
𝑅0
2

2𝐺(𝑚0 + 𝑎)
(
1 + 𝜆

2
𝑃𝑣 sin𝜑 + 𝐶𝑐𝑜𝑡𝜑) (26) 

According to equation (26), radius R0 of plastic zone can be solved as 

follows 

𝑅0 = [
2𝑚0𝐺(𝑚0 + 𝑎)

1 + 𝜆
2

𝑃𝑣 sin𝜑 + 𝐶𝑐𝑜𝑡𝜑
]

1
2

(27) 

Substituting equation (27) into equation (9), the support resistance pi 

can be solved as follows 

𝑝𝑖 = (
1 + 𝜆

2
𝑃𝑣 + 𝐶𝑐𝑜𝑡𝜑) (1 − sin𝜑)                                                 

     × [
(
1 + 𝜆
2

𝑃𝑣 sin𝜑 + 𝐶𝑐𝑜𝑡𝜑) (𝑚0 + 𝑎)

2𝑚0𝐺
]

sin𝜑
1−sin𝜑

− 𝐶𝑐𝑜𝑡𝜑 (28)

 

Substituting equation (24) into equation (28), equation (28) can be 

simplified as follows 

𝑝𝑖 = 𝛼𝛽 [
𝛼(𝑚0 + 𝑎) sin𝜑

2𝑚0𝐺
]

sin𝜑
𝛽

− 𝐶𝑐𝑜𝑡𝜑 (29) 

Since G=E/[2×(1+μ)], equation (29) can be changed to 

𝑝𝑖 = 𝛼𝛽 [
𝛼(1 + 𝜇)(𝑚0 + 𝑎) sin𝜑

𝑚0𝐸
]

sin𝜑
𝛽

− 𝐶𝑐𝑜𝑡𝜑 (30) 

In practical engineering, the radial displacement u of the tunnel wall 

mainly consists of two parts: the radial displacement u1 from the 

excavation of the tunnel to the setting of the support and the radial 
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displacement u2 after the setting of the support. Due to the assumption that 

the reserved deformation is equal to the displacement of the surrounding 

rock 

𝑚0 = 𝑢 = 𝑢1 + 𝑢2 (31) 

At present, the measured relationship curve between the displacement 

of the tunnel wall and excavation time t under unknown protection is 

generally used to calculate u1. For the circular section tunnel with a closed 

concrete lining, according to the assumption of the joint deformation of the 

surrounding rock and support, the expression of u2 related to the form of 

the support structure can be solved according to the thick-walled tube 

theory of elasticity. 

Under axisymmetric load conditions, it is assumed that there is a 

cylinder with an inner diameter of r and an outer diameter of R, which is 

affected by internal pressure q1 and external pressure q2. According to the 

relevant theory of a thick-walled cylinder, the stress component of the 

cylinder under uniformly distributed pressure can be obtained, which is the 

Lame solution. 

{
 
 
 

 
 
 
𝜎𝜌 =

𝑅2

𝜌2
− 1

𝑅2

𝑟2
− 1

𝑞1 −
1−

𝑟2

𝜌2

1 −
𝑟2

𝑅2

𝑞2

𝜎𝜑 =

𝑅2

𝜌2
+ 1

𝑅2

𝑟2
− 1

𝑞1 −
1 +

𝑟2

𝜌2

1 −
𝑟2

𝑅2

𝑞2

(32) 

According to assumption (2) in section 3.2, the initial support is 

equivalent to a thick-walled cylinder subjected to an axisymmetric external 

pressure Pi, and then there is 

{
𝑞1 = 0
𝑞2 = 𝑃𝑖

(33) 

Substituting equation (32) into equation (33), it can be obtained that 

{
 
 
 

 
 
 
𝜎𝜌 = −

1 −
𝑟2

𝜌2

1 −
𝑟2

𝑅2

𝑃𝑖

𝜎𝜑 = −
1 +

𝑟2

𝜌2

1 −
𝑟2

𝑅2

𝑃𝑖

(34) 

The corresponding expressions of the radial surrounding rock 

displacement under external pressure pi can be obtained as follows 

 

𝑢𝜌 = −
𝑃𝑖
𝐸
[
(1 + 𝜇) +

𝜌2(1 − 𝜇)
𝑟2

𝜌（
1
𝑟2
−
1
𝑅2
）

] (35) 

When ρ=R, the displacement u2 at the outer diameter of the lining can 

be obtained as follows 

𝑢2 = −
𝑃𝑖𝑅

𝐸′
[
𝑟2 + 𝑅2

𝑟2 − 𝑅2
− 𝜇′] (36) 

where r is the inner radius of the support, R is the external radius of 

support, E′
 and μ′ are elastic modulus and Poisson ratio of the 

support materials. Substituting equation (36) into equation (31), 

equation (37) can be obtained as follows 

𝑚0 = 𝑢 = 𝑢1 +
𝑃𝑖𝑅

𝐸′
(
𝑟2 + 𝑅2

𝑟2 − 𝑅2
− 𝜇′) (37) 

Substituting equation (37) into equation (30), equation (38) can be 

obtained as follows 

𝑃𝑖 = 𝛼𝛽{
𝛼(1 + 𝜇) [𝑢1 +

𝑃𝑖𝑅
𝐸′
(
𝑟2 +𝑅2

𝑟2 −𝑅2
− 𝜇′) + 𝑎] sin𝜑

[𝑢1 +
𝑃𝑖𝑅
𝐸′
(
𝑟2 + 𝑅2

𝑟2 − 𝑅2
− 𝜇′)]𝐸

}

sin𝜑
𝛽

− 𝐶 cos𝜑

(38)

 

From equation (38), it can be seen that the support resistance pi is 

related to the strength parameters C、φ、E of surrounding rock, structural 

and strength parameters r、R、E′、μ′ of support materials, vertical stress 

Pv, lateral pressure coefficient λ and tunnel radius a. 

Similarly, when ρ=R and the lining is in the critical state of failure, the 

stress reaches the compressive strength σc According to equation (34), it 

can be concluded that the stress at the outer diameter of the lining needs to 

be satisfied: 

𝑃𝑖 ≤
𝑅2 − 𝑟2

𝑅2 + 𝑟2
𝜎𝑐 (39) 

Based on equations (38) and (39), the support structure can be 

designed in the limit state. 

4. Analysis of influencing factors of optimal reserved deformation 

Analysing the influencing factors of an expression can better explain 

the law of the variable being influenced by other variables [43–45]. From 

equation (25), it can be seen that the optimum reserved deformation m0 is 

related to in situ stress Pv support resistance pi, lateral pressure coefficient 

λ, tunnel radius a, and mechanical parameters C、φ、E、μ of surrounding 

rock. To study the variation lows of the optimal reserved deformation 

influenced by these variables, this article conduct a quantitative analysis 

of these influencing factors. The basic parameters of the surrounding rock 

are shown in Table 1. The influence of a single factor on the optimal 

reserved deformation m0 is analysed by changing its value. 

Due to the grade of the surrounding rock with large deformation is 

usually not high, the values of influencing factors are selected according 

to the relevant codes where list the physical and mechanical property 

indicators of different surrounding rock grades and own experience. The 

values of each influencing factor are as follows: (a) The values of vertical 

stress Pv are 0 MPa, 5 MPa, 10 MPa, 15 MPa, 20 MPa, 25 MPa and 30 

MPa; (b) The values of support resistance pi are 0.5 MPa, 1 MPa, 2 MPa, 

3 MPa, 4 MPa, 5 MPa and 6 MPa; (c) The values of modulus of elasticity 

G are 1 GPa, 2 GPa, 3 GPa, 4 GPa, 5 GPa, 6 GPa and 7 GPa; (d) The tunnel 

radius of a are 1 m, 2 m, 3 m, 4 m, 5 m, 6 m, 7 m; (e) The values of internal 

friction angle φ are 31°, 32°, 33°, 34°, 35°, 36° and 37°; (f) The values of 

cohesion C are 0.1 MPa, 0.2 MPa, 0.3 MPa, 0.4 MPa, 0.5 MPa, 0.6 MPa 

and 0.7 MPa. 

Refer to Table 1 for the values of other relevant parameters. At 

different lateral pressure coefficient λ, the trend curve of the optimal 

reserved deformation m0 with different influencing factors is plotted as 

shown in Figure 4. It can be seen from Figure 4(a) that at different lateral 

pressure coefficients λ, the optimal reserved deformation m0 gradually 

increases with the increase of vertical pressure Pv. The curves show a 

upward trend of concave curves, which indicates that the variation of the 

optimal reserved deformation m0 gradually increases. At the same vertical 

pressure Pv, The larger the lateral pressure coefficient λ is, the larger the 

required optimal reserved deformation m0 is. 

As shown in Figure 4(b), with the increase of support resistance pi, the 

optimum reserved deformation m0 will gradually decrease and the 

amplitude of change will gradually decrease. At the same support 

resistance pi, the larger the lateral pressure coefficient λ is, the larger the 

required optimal reserved deformation m0 is. 

From Figure 4(c), it can be seen that the change trend of the optimal 

reserved deformation m0 with the modulus of elasticity E is the same as 

the change trend with the support resistance pi. Under different lateral 

pressure coefficients λ, the optimal reserved deformation m0 gradually 

decreases with the increase of modulus of elasticity E, and the amplitude 

of change gradually decreases. At the same modulus E, the larger the 

lateral pressure coefficient λ is, the larger the optimal reserved deformation 

m0 is. 

From Figure 4(d), it can be seen that the curve shows a linear increase 

with the increase in radius a. This indicates that the optimal reserved 

deformation m0 will gradually increase with a constant change. At the same 

tunnel radius a, the larger the lateral pressure coefficient λ is, the larger the 

required optimal reserved deformation m0 is. With increases of λ, the slope 

of the line becomes larger, indicating a larger variation in the optimal 

reserved deformation. 

It can be seen from Figure 4(e) that at different lateral pressure 

coefficients λ, the curve shows a decreasing trend of the concave curve 

with the increase of the internal friction angle φ, which means that the 

optimal reserved deformation m0 will gradually decrease. At the same 

internal friction angle φ, the larger the λ is, the larger the required optimal 

reserved deformation m0 is. 

From Figure 4(f), it can be seen that the trend of the optimal reserved 

deformation m0 with cohesion C is the same as the trend of the optimal 

reserved deformation m0 with internal friction angle φ. At different lateral 



Rock Mech. Lett. 2025, 2(1): 6 42 
 

 
https://doi.org/10.70425/rml.202501.6  www.journal-rml.com 

pressure coefficients λ, the optimal reserved deformation m0 gradually 

decreases with the increase of cohesion C, and the curve shows a 

downward trend of concave curve, indicating that the reduction of the 

optimal reserved deformation is gradually decreasing. At the same 

cohesion C, the larger the lateral pressure coefficient λ, the larger the 

required optimal reserved deformation m0 is. 

Table 1. Basic parameters of surrounding rock under influence factor analysis 

Tunnel ra-

dius a/m 

Elastic mod-

ulus E/GPa 

Vertical pres-

sure Pv/MPa 

Cohesion 

C/MPa 

Internal fric-

tion angle φ/° 

Poisson 

ratio μ 

Lateral pressure coefficient 

λ 

Support resistance pi 

/MPa 

4 2 20 0.1 35 0.35 0.5、0.75、1、1.25、1.5 1 

   

(a) (b) (c) 

   

(d) (e) (f) 

Fig. 4. The trend curve of the optimal reserved deformation amount with different influencing factors 

5. Comparison analysis of numerical solution and analytical solution 

considering the reserved deformation 

FLAC 3D is a numerical simulation software for geotechnical 

engineering. With the continuous improvement of FLAC 3D, many 

scholars have chosen FALC 3D software to conduct relevant analyses and 

research on rock engineering [46–49]. In this paper, FLAC 3D is used to 

simulate the displacement of surrounding rock considering the reserved 

deformation, and compare it with result of equation (20). Simultaneously 

FLAC 3D was used to determine the optimal reserved deformation and 

compare it with the result of equation (23). 

5.1. Comparative analysis of numerical and analytical solutions for the 

expression equation of surrounding rock displacement 

During the numerical simulation, the support resistance and the 

reserved deformation m must to be determined firstly, then compare the 

error of surrounding rock displacement with the change of reserved 

deformation m under the two methods of analytical solution and numerical 

simulation. 

The modelling method for numerical models refers to YangandGao's 

[50] modelling method. The model size is 88×88×1m, and the values of 

the reserved deformation m are taken as 0, 10, 20, 30, 40 and 50mm in 

sequence. Since equation (20) is derived based on elastic–plastic theory, 

the Mohr Coulomb model is selected as the constitutive model. According 

to the Saint-Venant principle[49], the surrounding rock outside the range 

of five times the tunnel diameter is not affected by the tunnel excavation, 

so the left, right, front, rear, top and bottom surfaces of the model need to 

be fixed.The relevant parameters of the surrounding rock are shown in 

Table 2, and the numerical simulation results are shown in Figure 5. 

Figure 5 shows that when the reserved deformation m is small, there 

will be a prominent “ear shape” on the tunnel side wall, indicating that the 

displacement of the surrounding rock of the side wall will be slightly 

greater than the displacement at the vault and arch bottom. As the reserved 

deformation m increases, the displacement u0 of the surrounding rock at 

the side wall, vault and arch bottom positions gradually increases, but the 

“ear shaped” phenomenon gradually disappears, and the displacement near 

the tunnel wall appears approximately circular. This is the same trend as 

in equation (51), where the displacement of the surrounding rock increases 

with an increase in the reserved deformation. 

Extract the data on the maximum displacement of the surrounding 

rock at the tunnel wall in numerical simulation, draw a curve graph, and 

compare it with the relevant data of the analytical solution, as shown in 

Figure 6. From Figure 6, it can be seen that the variation law of the 

numerical and analytical solutions for the displacement of the surrounding 

rock is basically the same, both gradually increasing with the increase in 

the reserved deformation m. However, there is a certain distance between 

the two curves of the analytical and numerical solutions, indicating a 

certain degree of error between the analytical and numerical solutions. 

The values of surrounding rock displacement was list in Table 3, 

which obtained by analytical and numerical methods under different 

reserved deformation and compare them. The comparison results are 

shown in Table 3. 

Table 2. Relevant parameters of numerical simulation 

Tunnel radius 

a/m 

Elastic modulus 

E/GPa 

Vertical pressure 

Pv /MPa 
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Internal friction 

angle φ/° 

Poisson's 

ratio μ 

Lateral pressure 

coefficient λ 
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Table 3. Comparisons between analytical solutions and numerical simulation results of displacement of the surrounding rock 

Displacement of surrounding 

rock/mm 

Reserved deformation/mm 

0 100 200 300 400 500 

Analytical solution 291.22 298.50 305.78 313.07 320.35 327.63 

Numerical solution 327.00 332.00 339.00 349.00 362.00 370.00 

Error /% 10.94 10.09 9.80 10.30 11.51 11.45 

 

   

(a) m=0mm (b) m=10mm (c) m=20mm 

   

(d) m=30mm (e) m=40mm (f) m=50mm 

Fig. 5. Displacement nephograms of surrounding rock with different reserved deformations(m) 

 

Fig. 6. Trend diagram of surrounding rock displacement with reserved 

deformation 

5.2. Comparison and analysis of numerical solutions and analytical 

solutions for optimal reserved deformation 

During the process of numerical simulation of the expression of the 

optimal reserved deformation, the reserved deformation m0 needs to be 

solved by equation (23) when the support resistance pi is known. Then the 

model is built according to the reserved deformation. When the 

displacement of the surrounding rock is compared with the reserved 

deformation m0 by numerical simulation, If the ratio of the displacement 

of the surrounding rock to the reserved deformation m0 is close 1, it mean 

that equation (23) has high accuracy. 

The constitutive model for numerical simulation uses the elastic–

plastic model, and the basic parameters of the surrounding rock are listed 

in Table 1. The value of support resistance pi is proposed to be 1, 2, 3, 4, 5 

and 6 MPa. Based on the parameters of the surrounding rock in Table 1 

and the values of support resistance pi, the reserved deformation m0 under 

different support resistance pi can be obtained (as shown in Table 4) by 

substituting them into equation (23).  

The modelling is based on the reserved deformation m0 obtained from 

Table 4, and the numerical simulation results are shown in Figure 7.  

Table 4. Analytical solution value of reserved deformation under different 
support resistances 

Support resistance 

pi /MPa 
1 2 3 4 5 6 

Reserved defor-

mation m0 /mm 
349.4 238.8 190.1 162.1 143 129.0 

From Figure 7, it can be seen that when the support resistance pi is 

small, the displacement at the vault, side wall, and arch bottom is basically 

the same. As the support resistance pi gradually increases, an “ear shaped” 

phenomenon appears at the side wall, indicating that the displacement of 

the surrounding rock at the side wall will be greater than the vault and arch 

bottom. The larger the support resistance pi, the more obvious the “ear 

0

50

100

150

200

250

300

350

400

0 100 200 300 400 500

T
h

e
 d

is
p

la
c
e
m

e
n

t 
o

f 
th

e
 

su
rr

o
u

n
d

in
g
 r

o
c
k

/m
m

reserved deformation m/mm

Analytical solution

umerical solution



Rock Mech. Lett. 2025, 2(1): 6 44 
 

 
https://doi.org/10.70425/rml.202501.6  www.journal-rml.com 

shaped” phenomenon. However, when the support resistance pi increases, 

the displacement of the surrounding rock at the vault, side walls, and arch 

bottom of the tunnel gradually decreases, which is consistent with the trend 

of the reserved deformation obtained from equation (23), which gradually 

decreases with the increase of the support resistance pi. 

Extract the displacement data of the surrounding rock from the 

numerical simulation and draw a curve graph, as shown in Figure 8.  

From Figure 8, it can be seen that the reserved deformation m0 solved 

by the analytical solution and the displacement u0 of the surrounding rock 

obtained by numerical simulation gradually decrease with the increase of 

support resistance pi, and the slope of the curve decreases. The two curves 

of the analytical and numerical solutions do not coincide, indicating a 

certain degree of error between the analytical and numerical solutions. 

At different support resistances, the values of reserved deformation 

obtained by solving equation (23) and the values of surrounding rock 

displacement obtained by numerical simulation were listed and compared. 

The comparison results are shown in Table 5.  

From Table 5, it can be seen that as the with support resistance pi 

gradually increases, the error is gradually increases. The maximum error 

is 11.61%. However, the error is basically within the range of 12%, 

indicating that equation (23) has a high degree of consistency between the 

analytical and numerical solutions. 

Table 5. Comparison of reserved deformation and surrounding rock displacement 

Support resistance pi /MPa 1 2 3 4 5 6 

Reserved deformation (analytical solution) /mm 349.41 238.82 190.45 162.08 142.98 129.05 

Displacement of surrounding rock (numerical solution)/mm 384.00 264.00 212.00 181.00 161.00 146.00 

Error /% 9.01 9.54 10.16 10.45 11.19 11.61 

   

(a) Pi=1MPa (b) Pi=2MPa (c) Pi=3MPa 

   

(d) Pi=4MPa (e) Pi =5MPa (f) Pi =6MPa 

Fig. 7. Displacement nephogram of surrounding rock under different support resistances (m) 

 

Fig. 8. Change trend diagram of surrounding rock displacement with sup-

port resistance 

Although this article has derived an elastic–plastic expression for a 

circular cavity considering reserved deformation under non-axisymmetric 

load conditions, there are shortcomings in the research. First, the support 

of soft rock is timely and close to the tunnel face [51,52]. Therefore, it is 

necessary to consider the influence of the tunnel face. However, this article 

only deduces and analyses the analytical solution for the plane strain 

problem. Second, soft rock has creep properties [53,54], but this article 

ignores these properties and directly derives the elastic–plastic relationship. 

Obviously, there is a certain error in the actual situation, which can be seen 

in the numerical simulation. Finally, during the solution process, this 

article assumes that support resistance is constant, but in fact, support 

resistance will change with time [55]. Moreover, this article only considers 

the support resistance of the initial support and ignores the influence of the 

secondary lining. Therefore, in the subsequent research, the support effect 

of the tunnel face and secondary lining, the influence of time on the 

0

50

100

150

200

250

300

350

400

450

0 1 2 3 4 5 6 7

D
is

p
la

ce
m

en
t/

m
m

Support resistance pi/MPa

Analytical solution

Numerical solution



Rock Mech. Lett. 2025, 2(1): 6 45 
 

 
https://doi.org/10.70425/rml.202501.6  www.journal-rml.com 

displacement of surrounding rock and the variation of support resistance 

with time need to be considered. 

6. Conclusion 

On the basis of classical elastic–plastic theory, this article made some 

assumptions and derived the relevant expression equations for considering 

the reserved deformation under non-axisymmetric load conditions. The 

main conclusions are as follows: 

(1) On the basis of classical elastic–plastic theory, the displacement 

expression of the surrounding rock is derived, considering the reserved 

deformation m0 and the optimal reserved deformation m0 under non-

axisymmetric load conditions. The expression of support resistance with 

surrounding rock, support materials and crustal stress is derived on the 

basis of the known reserved deformation m. 

(2) Through the method of controlling variables, the influencing 

factors of the reserved deformation are analysed. The analysis results show 

that the more the vertical pressure Pv, tunnel radius a and lateral pressure 

coefficient λ, the larger the optimal reserved deformation. However, with 

the increase of support resistance pi, elastic modulus E, internal friction 

angle φ and cohesion C, the optimal reserved deformation becomes smaller. 

(3) Numerical simulations were conducted using FLAC 3D software 

to calculate the displacement expression of the surrounding rock, 

considering the reserved deformation m and the expression of the optimal 

reserved deformation m0. The numerical simulation results were compared 

and analysed with the analytical solution results. The results show that the 

error between the numerical simulation and analytical solutions of the 

surrounding rock displacement expression, considering the reserved 

deformation m and the optimal reserved deformation m0, is within 12%, 

indicating that the numerical and analytical solutions of the two 

expressions have good consistency. 

(4) In practical engineering, by inputting relevant parameters into the 

expression of the optimal reserved deformation, the value of the optimal 

reserved deformation can be obtained. So the expression of the optimal 

reserved deformation can providing a theoretical basis for determining the 

reserved deformation in practical engineering. 
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